Namespaces
Variants
Actions

Difference between revisions of "Minkowski inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The proper Minkowski inequality: For real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640601.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640602.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640603.png" />,
+
<!--
 +
m0640601.png
 +
$#A+1 = 56 n = 0
 +
$#C+1 = 56 : ~/encyclopedia/old_files/data/M064/M.0604060 Minkowski inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640604.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
This was derived by H. Minkowski . For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640606.png" />, the inequality is reversed (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640607.png" /> one must have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640608.png" />). In each case equality holds if and only if the rows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m0640609.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406010.png" /> are proportional. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406011.png" /> Minkowski's inequality is called the triangle inequality. Minkowski's inequality can be generalized in various ways (also called Minkowski inequalities). Below some of them are listed.
+
The proper Minkowski inequality: For real numbers  $  x _ {i} , y _ {i} \geq  0 $,  
 +
$  i = 1 \dots n $,  
 +
and for $  p > 1 $,
  
Minkowski's inequality for sums. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406012.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406014.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406015.png" />. Then
+
$$ \tag{1 }
 +
\left (
 +
\sum _ { i= } 1 ^ { n }
 +
( x _ {i} + y _ {i} ) \right )
 +
^ {1/p}  \leq  \
 +
\left ( \sum _ { i= } 1 ^ { n }  x _ {i}  ^ {p} \right )  ^ {1/p} +
 +
\left ( \sum _ { i= } 1 ^ { n }  y _ {i}  ^ {p} \right )  ^ {1/p} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
This was derived by H. Minkowski . For  $  p < 1 $,
 +
$  p \neq 0 $,
 +
the inequality is reversed (for  $  p < 0 $
 +
one must have  $  x _ {i} , y _ {i} > 0 $).  
 +
In each case equality holds if and only if the rows  $  \{ x _ {i} \} $
 +
and  $  \{ y _ {i} \} $
 +
are proportional. For  $  p = 2 $
 +
Minkowski's inequality is called the triangle inequality. Minkowski's inequality can be generalized in various ways (also called Minkowski inequalities). Below some of them are listed.
  
The inequality is reversed for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406018.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406019.png" /> it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406020.png" />. In each case equality holds if and only if the rows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406021.png" /> are proportional. There are also generalizations of
+
Minkowski's inequality for sums. Let  $  x _ {ij} \geq  0 $
 +
for  $  i = 1 \dots n $
 +
and  $  j = 1 \dots m $
 +
and let  $  p > 1 $.  
 +
Then
 +
 
 +
$$ \tag{2 }
 +
\left [
 +
\sum _ { i= } 1 ^ { n }
 +
\left ( \sum _ { j= } 1 ^ { m }  x _ {ij} \right )  ^ {p}
 +
\right ]  ^ {1/p}
 +
\leq  \
 +
\sum _ { j= } 1 ^ { m }
 +
\left ( \sum _ { i= } 1 ^ { n }  x _ {ij}  ^ {p} \right )  ^ {1/p} .
 +
$$
 +
 
 +
The inequality is reversed for  $  p < 1 $,
 +
$  p \neq 0 $,  
 +
and for $  p < 0 $
 +
it is assumed that $  x _ {ij} > 0 $.  
 +
In each case equality holds if and only if the rows $  \{ x _ {i1} \} \dots \{ x _ {im} \} $
 +
are proportional. There are also generalizations of
  
 
for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ).
 
for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ).
Line 15: Line 60:
 
Inequalities
 
Inequalities
  
and (2) are homogeneous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406022.png" /> and therefore have analogues for various means, for example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406024.png" />, then
+
and (2) are homogeneous with respect to $  \sum $
 +
and therefore have analogues for various means, for example, if $  M _  \phi  ( x _ {i} ) = \phi  ^ {-} 1 \{ \sum \phi ( x _ {i} ) \} $,  
 +
where $  \phi ( t) = \mathop{\rm log}  t $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406025.png" /></td> </tr></table>
+
$$
 +
M _  \phi  \left (
 +
\frac{x _ {i} + y _ {i} }{2}
 +
\right )
 +
\leq 
 +
\frac{1}{2}
 +
M _  \phi  ( x _ {i} )
 +
+
 +
\frac{1}{2}
 +
M _  \phi  ( y _ {i} ) ;
 +
$$
  
 
for more details see .
 
for more details see .
Line 23: Line 81:
 
Minkowski's inequality for integrals is similar to
 
Minkowski's inequality for integrals is similar to
  
and also holds because of the homogeneity with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406026.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406027.png" /> be integrable functions in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406028.png" /> with respect to the volume element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406029.png" />. Then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406030.png" />,
+
and also holds because of the homogeneity with respect to $  \int $.  
 +
Let $  f , g $
 +
be integrable functions in a domain $  X \subset  \mathbf R  ^ {n} $
 +
with respect to the volume element $  d V $.  
 +
Then for $  p > 1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\left ( \int\limits _ { X } | f + g |  ^ {p}  d V \right ) ^ {1/p\ } \leq
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406032.png" /></td> </tr></table>
+
$$
 +
\leq  \
 +
\left ( \int\limits _ { X } | f |  ^ {p}  d V \right )  ^ {1/p} +
 +
\left ( \int\limits _ { X } | g |  ^ {p}  d V \right )  ^ {1/p} .
 +
$$
  
A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406033.png" />, then
+
A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If $  k > 1 $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406034.png" /></td> </tr></table>
+
$$
 +
\left ( \int\limits \left ( \int\limits f ( x , y )  d y \right )  ^ {k}  d x \right )
 +
^ {1/k}  \leq  \
 +
\int\limits \left ( \int\limits f ^ { k } ( x , y )  d x \right )  ^ {1/k}  d y ,
 +
$$
  
where equality holds only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406035.png" />.
+
where equality holds only if $  f ( x , y ) = \phi ( x) \psi ( y) $.
  
 
Other inequalities of Minkowski type:
 
Other inequalities of Minkowski type:
  
a) for products: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406036.png" />, then
+
a) for products: If $  x _ {i} , y _ {i} \geq  0 $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406037.png" /></td> </tr></table>
+
$$
 +
\prod _ { i= } 1 ^ { n }  ( x _ {i} + y _ {i} )  ^ {1/n}
 +
\geq  \
 +
\left ( \prod _ { i= } 1 ^ { n }  x _ {i} \right )  ^ {1/n} +
 +
\left ( \prod _ { i= } 1 ^ { n }  y _ {i} \right )  ^ {1/n} ;
 +
$$
  
b) Mahler's inequality: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406038.png" /> be a generalized norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406040.png" /> its polar function; then
+
b) Mahler's inequality: Let $  F ( x) $
 +
be a generalized norm on $  E  ^ {n} $
 +
and $  G ( y) $
 +
its polar function; then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406041.png" /></td> </tr></table>
+
$$
 +
( x , y )  \leq  F ( x) G ( y) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406042.png" /> is the [[Inner product|inner product]];
+
where $  ( \cdot , \cdot ) $
 +
is the [[Inner product|inner product]];
  
c) for determinants: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406043.png" /> are non-negative Hermitian matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406044.png" />, then
+
c) for determinants: If $  A , B $
 +
are non-negative Hermitian matrices over $  \mathbf C $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406045.png" /></td> </tr></table>
+
$$
 +
(  \mathop{\rm det} ( A + B ) )  ^ {1/n}  \geq  \
 +
(  \mathop{\rm det}  A )  ^ {1/n} +
 +
(  \mathop{\rm det}  B )  ^ {1/n} .
 +
$$
  
 
Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the [[Brunn–Minkowski theorem|Brunn–Minkowski theorem]].
 
Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the [[Brunn–Minkowski theorem|Brunn–Minkowski theorem]].
Line 55: Line 146:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Minkowski,  "Geometrie der Zahlen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  J.E. Littlewood,  G. Pólya,  "Inequalities" , Cambridge Univ. Press  (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.F. Beckenbach,  R. Bellman,  "Inequalities" , Springer  (1961)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Marcus,  H. Minc,  "Survey of matrix theory and matrix inequalities" , Allyn &amp; Bacon  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Minkowski,  "Geometrie der Zahlen" , Chelsea, reprint  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  J.E. Littlewood,  G. Pólya,  "Inequalities" , Cambridge Univ. Press  (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  E.F. Beckenbach,  R. Bellman,  "Inequalities" , Springer  (1961)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M. Marcus,  H. Minc,  "Survey of matrix theory and matrix inequalities" , Allyn &amp; Bacon  (1964)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A generalized norm on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406046.png" /> is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406047.png" /> for which: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406048.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406049.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406050.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406051.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406052.png" />. The polar form (or polar function) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406053.png" /> of the generalized norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406054.png" /> is defined by:
+
A generalized norm on $  E  ^ {n} $
 +
is a function $  F $
 +
for which: 1) $  F ( x) > 0 $
 +
for $  x \neq 0 $;  
 +
2) $  F ( t x ) = t F ( x) $
 +
for $  t \geq  0 $;  
 +
and 3) $  F ( x) + F ( y) \geq  F ( x + y ) $.  
 +
The polar form (or polar function) $  G $
 +
of the generalized norm $  F $
 +
is defined by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406055.png" /></td> </tr></table>
+
$$
 +
G ( y)  = \max _ { x } 
 +
\frac{( x , y ) }{F ( x) }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064060/m06406056.png" /> is the inner product.
+
where $  ( \cdot , \cdot ) $
 +
is the inner product.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Bullen,  D.S. Mitrinović,  P.M. Vasić,  "Means and their inequalities" , Reidel  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.S. Bullen,  D.S. Mitrinović,  P.M. Vasić,  "Means and their inequalities" , Reidel  (1988)</TD></TR></table>

Revision as of 08:00, 6 June 2020


The proper Minkowski inequality: For real numbers $ x _ {i} , y _ {i} \geq 0 $, $ i = 1 \dots n $, and for $ p > 1 $,

$$ \tag{1 } \left ( \sum _ { i= } 1 ^ { n } ( x _ {i} + y _ {i} ) \right ) ^ {1/p} \leq \ \left ( \sum _ { i= } 1 ^ { n } x _ {i} ^ {p} \right ) ^ {1/p} + \left ( \sum _ { i= } 1 ^ { n } y _ {i} ^ {p} \right ) ^ {1/p} . $$

This was derived by H. Minkowski . For $ p < 1 $, $ p \neq 0 $, the inequality is reversed (for $ p < 0 $ one must have $ x _ {i} , y _ {i} > 0 $). In each case equality holds if and only if the rows $ \{ x _ {i} \} $ and $ \{ y _ {i} \} $ are proportional. For $ p = 2 $ Minkowski's inequality is called the triangle inequality. Minkowski's inequality can be generalized in various ways (also called Minkowski inequalities). Below some of them are listed.

Minkowski's inequality for sums. Let $ x _ {ij} \geq 0 $ for $ i = 1 \dots n $ and $ j = 1 \dots m $ and let $ p > 1 $. Then

$$ \tag{2 } \left [ \sum _ { i= } 1 ^ { n } \left ( \sum _ { j= } 1 ^ { m } x _ {ij} \right ) ^ {p} \right ] ^ {1/p} \leq \ \sum _ { j= } 1 ^ { m } \left ( \sum _ { i= } 1 ^ { n } x _ {ij} ^ {p} \right ) ^ {1/p} . $$

The inequality is reversed for $ p < 1 $, $ p \neq 0 $, and for $ p < 0 $ it is assumed that $ x _ {ij} > 0 $. In each case equality holds if and only if the rows $ \{ x _ {i1} \} \dots \{ x _ {im} \} $ are proportional. There are also generalizations of

for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ).

Inequalities

and (2) are homogeneous with respect to $ \sum $ and therefore have analogues for various means, for example, if $ M _ \phi ( x _ {i} ) = \phi ^ {-} 1 \{ \sum \phi ( x _ {i} ) \} $, where $ \phi ( t) = \mathop{\rm log} t $, then

$$ M _ \phi \left ( \frac{x _ {i} + y _ {i} }{2} \right ) \leq \frac{1}{2} M _ \phi ( x _ {i} ) + \frac{1}{2} M _ \phi ( y _ {i} ) ; $$

for more details see .

Minkowski's inequality for integrals is similar to

and also holds because of the homogeneity with respect to $ \int $. Let $ f , g $ be integrable functions in a domain $ X \subset \mathbf R ^ {n} $ with respect to the volume element $ d V $. Then for $ p > 1 $,

$$ \tag{3 } \left ( \int\limits _ { X } | f + g | ^ {p} d V \right ) ^ {1/p\ } \leq $$

$$ \leq \ \left ( \int\limits _ { X } | f | ^ {p} d V \right ) ^ {1/p} + \left ( \int\limits _ { X } | g | ^ {p} d V \right ) ^ {1/p} . $$

A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If $ k > 1 $, then

$$ \left ( \int\limits \left ( \int\limits f ( x , y ) d y \right ) ^ {k} d x \right ) ^ {1/k} \leq \ \int\limits \left ( \int\limits f ^ { k } ( x , y ) d x \right ) ^ {1/k} d y , $$

where equality holds only if $ f ( x , y ) = \phi ( x) \psi ( y) $.

Other inequalities of Minkowski type:

a) for products: If $ x _ {i} , y _ {i} \geq 0 $, then

$$ \prod _ { i= } 1 ^ { n } ( x _ {i} + y _ {i} ) ^ {1/n} \geq \ \left ( \prod _ { i= } 1 ^ { n } x _ {i} \right ) ^ {1/n} + \left ( \prod _ { i= } 1 ^ { n } y _ {i} \right ) ^ {1/n} ; $$

b) Mahler's inequality: Let $ F ( x) $ be a generalized norm on $ E ^ {n} $ and $ G ( y) $ its polar function; then

$$ ( x , y ) \leq F ( x) G ( y) , $$

where $ ( \cdot , \cdot ) $ is the inner product;

c) for determinants: If $ A , B $ are non-negative Hermitian matrices over $ \mathbf C $, then

$$ ( \mathop{\rm det} ( A + B ) ) ^ {1/n} \geq \ ( \mathop{\rm det} A ) ^ {1/n} + ( \mathop{\rm det} B ) ^ {1/n} . $$

Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the Brunn–Minkowski theorem.

References

[1] H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953)
[2] G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)
[3] E.F. Beckenbach, R. Bellman, "Inequalities" , Springer (1961)
[4] M. Marcus, H. Minc, "Survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964)

Comments

A generalized norm on $ E ^ {n} $ is a function $ F $ for which: 1) $ F ( x) > 0 $ for $ x \neq 0 $; 2) $ F ( t x ) = t F ( x) $ for $ t \geq 0 $; and 3) $ F ( x) + F ( y) \geq F ( x + y ) $. The polar form (or polar function) $ G $ of the generalized norm $ F $ is defined by:

$$ G ( y) = \max _ { x } \frac{( x , y ) }{F ( x) } , $$

where $ ( \cdot , \cdot ) $ is the inner product.

References

[a1] P.S. Bullen, D.S. Mitrinović, P.M. Vasić, "Means and their inequalities" , Reidel (1988)
How to Cite This Entry:
Minkowski inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minkowski_inequality&oldid=17387
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article