Difference between revisions of "Minkowski inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0640601.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/M064/M.0604060 Minkowski inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The proper Minkowski inequality: For real numbers $ x _ {i} , y _ {i} \geq 0 $, | |
+ | $ i = 1 \dots n $, | ||
+ | and for $ p > 1 $, | ||
− | + | $$ \tag{1 } | |
+ | \left ( | ||
+ | \sum _ { i= } 1 ^ { n } | ||
+ | ( x _ {i} + y _ {i} ) \right ) | ||
+ | ^ {1/p} \leq \ | ||
+ | \left ( \sum _ { i= } 1 ^ { n } x _ {i} ^ {p} \right ) ^ {1/p} + | ||
+ | \left ( \sum _ { i= } 1 ^ { n } y _ {i} ^ {p} \right ) ^ {1/p} . | ||
+ | $$ | ||
− | < | + | This was derived by H. Minkowski . For $ p < 1 $, |
+ | $ p \neq 0 $, | ||
+ | the inequality is reversed (for $ p < 0 $ | ||
+ | one must have $ x _ {i} , y _ {i} > 0 $). | ||
+ | In each case equality holds if and only if the rows $ \{ x _ {i} \} $ | ||
+ | and $ \{ y _ {i} \} $ | ||
+ | are proportional. For $ p = 2 $ | ||
+ | Minkowski's inequality is called the triangle inequality. Minkowski's inequality can be generalized in various ways (also called Minkowski inequalities). Below some of them are listed. | ||
− | + | Minkowski's inequality for sums. Let $ x _ {ij} \geq 0 $ | |
+ | for $ i = 1 \dots n $ | ||
+ | and $ j = 1 \dots m $ | ||
+ | and let $ p > 1 $. | ||
+ | Then | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | \left [ | ||
+ | \sum _ { i= } 1 ^ { n } | ||
+ | \left ( \sum _ { j= } 1 ^ { m } x _ {ij} \right ) ^ {p} | ||
+ | \right ] ^ {1/p} | ||
+ | \leq \ | ||
+ | \sum _ { j= } 1 ^ { m } | ||
+ | \left ( \sum _ { i= } 1 ^ { n } x _ {ij} ^ {p} \right ) ^ {1/p} . | ||
+ | $$ | ||
+ | |||
+ | The inequality is reversed for $ p < 1 $, | ||
+ | $ p \neq 0 $, | ||
+ | and for $ p < 0 $ | ||
+ | it is assumed that $ x _ {ij} > 0 $. | ||
+ | In each case equality holds if and only if the rows $ \{ x _ {i1} \} \dots \{ x _ {im} \} $ | ||
+ | are proportional. There are also generalizations of | ||
for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ). | for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ). | ||
Line 15: | Line 60: | ||
Inequalities | Inequalities | ||
− | and (2) are homogeneous with respect to | + | and (2) are homogeneous with respect to $ \sum $ |
+ | and therefore have analogues for various means, for example, if $ M _ \phi ( x _ {i} ) = \phi ^ {-} 1 \{ \sum \phi ( x _ {i} ) \} $, | ||
+ | where $ \phi ( t) = \mathop{\rm log} t $, | ||
+ | then | ||
− | + | $$ | |
+ | M _ \phi \left ( | ||
+ | \frac{x _ {i} + y _ {i} }{2} | ||
+ | \right ) | ||
+ | \leq | ||
+ | \frac{1}{2} | ||
+ | M _ \phi ( x _ {i} ) | ||
+ | + | ||
+ | \frac{1}{2} | ||
+ | M _ \phi ( y _ {i} ) ; | ||
+ | $$ | ||
for more details see . | for more details see . | ||
Line 23: | Line 81: | ||
Minkowski's inequality for integrals is similar to | Minkowski's inequality for integrals is similar to | ||
− | and also holds because of the homogeneity with respect to | + | and also holds because of the homogeneity with respect to $ \int $. |
+ | Let $ f , g $ | ||
+ | be integrable functions in a domain $ X \subset \mathbf R ^ {n} $ | ||
+ | with respect to the volume element $ d V $. | ||
+ | Then for $ p > 1 $, | ||
− | + | $$ \tag{3 } | |
+ | \left ( \int\limits _ { X } | f + g | ^ {p} d V \right ) ^ {1/p\ } \leq | ||
+ | $$ | ||
− | + | $$ | |
+ | \leq \ | ||
+ | \left ( \int\limits _ { X } | f | ^ {p} d V \right ) ^ {1/p} + | ||
+ | \left ( \int\limits _ { X } | g | ^ {p} d V \right ) ^ {1/p} . | ||
+ | $$ | ||
− | A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If | + | A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If $ k > 1 $, |
+ | then | ||
− | + | $$ | |
+ | \left ( \int\limits \left ( \int\limits f ( x , y ) d y \right ) ^ {k} d x \right ) | ||
+ | ^ {1/k} \leq \ | ||
+ | \int\limits \left ( \int\limits f ^ { k } ( x , y ) d x \right ) ^ {1/k} d y , | ||
+ | $$ | ||
− | where equality holds only if | + | where equality holds only if $ f ( x , y ) = \phi ( x) \psi ( y) $. |
Other inequalities of Minkowski type: | Other inequalities of Minkowski type: | ||
− | a) for products: If | + | a) for products: If $ x _ {i} , y _ {i} \geq 0 $, |
+ | then | ||
− | + | $$ | |
+ | \prod _ { i= } 1 ^ { n } ( x _ {i} + y _ {i} ) ^ {1/n} | ||
+ | \geq \ | ||
+ | \left ( \prod _ { i= } 1 ^ { n } x _ {i} \right ) ^ {1/n} + | ||
+ | \left ( \prod _ { i= } 1 ^ { n } y _ {i} \right ) ^ {1/n} ; | ||
+ | $$ | ||
− | b) Mahler's inequality: Let | + | b) Mahler's inequality: Let $ F ( x) $ |
+ | be a generalized norm on $ E ^ {n} $ | ||
+ | and $ G ( y) $ | ||
+ | its polar function; then | ||
− | + | $$ | |
+ | ( x , y ) \leq F ( x) G ( y) , | ||
+ | $$ | ||
− | where | + | where $ ( \cdot , \cdot ) $ |
+ | is the [[Inner product|inner product]]; | ||
− | c) for determinants: If | + | c) for determinants: If $ A , B $ |
+ | are non-negative Hermitian matrices over $ \mathbf C $, | ||
+ | then | ||
− | + | $$ | |
+ | ( \mathop{\rm det} ( A + B ) ) ^ {1/n} \geq \ | ||
+ | ( \mathop{\rm det} A ) ^ {1/n} + | ||
+ | ( \mathop{\rm det} B ) ^ {1/n} . | ||
+ | $$ | ||
Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the [[Brunn–Minkowski theorem|Brunn–Minkowski theorem]]. | Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the [[Brunn–Minkowski theorem|Brunn–Minkowski theorem]]. | ||
Line 55: | Line 146: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.F. Beckenbach, R. Bellman, "Inequalities" , Springer (1961)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Marcus, H. Minc, "Survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.F. Beckenbach, R. Bellman, "Inequalities" , Springer (1961)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Marcus, H. Minc, "Survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A generalized norm on | + | A generalized norm on $ E ^ {n} $ |
+ | is a function $ F $ | ||
+ | for which: 1) $ F ( x) > 0 $ | ||
+ | for $ x \neq 0 $; | ||
+ | 2) $ F ( t x ) = t F ( x) $ | ||
+ | for $ t \geq 0 $; | ||
+ | and 3) $ F ( x) + F ( y) \geq F ( x + y ) $. | ||
+ | The polar form (or polar function) $ G $ | ||
+ | of the generalized norm $ F $ | ||
+ | is defined by: | ||
− | + | $$ | |
+ | G ( y) = \max _ { x } | ||
+ | \frac{( x , y ) }{F ( x) } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ ( \cdot , \cdot ) $ |
+ | is the inner product. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.S. Bullen, D.S. Mitrinović, P.M. Vasić, "Means and their inequalities" , Reidel (1988)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.S. Bullen, D.S. Mitrinović, P.M. Vasić, "Means and their inequalities" , Reidel (1988)</TD></TR></table> |
Revision as of 08:00, 6 June 2020
The proper Minkowski inequality: For real numbers $ x _ {i} , y _ {i} \geq 0 $,
$ i = 1 \dots n $,
and for $ p > 1 $,
$$ \tag{1 } \left ( \sum _ { i= } 1 ^ { n } ( x _ {i} + y _ {i} ) \right ) ^ {1/p} \leq \ \left ( \sum _ { i= } 1 ^ { n } x _ {i} ^ {p} \right ) ^ {1/p} + \left ( \sum _ { i= } 1 ^ { n } y _ {i} ^ {p} \right ) ^ {1/p} . $$
This was derived by H. Minkowski . For $ p < 1 $, $ p \neq 0 $, the inequality is reversed (for $ p < 0 $ one must have $ x _ {i} , y _ {i} > 0 $). In each case equality holds if and only if the rows $ \{ x _ {i} \} $ and $ \{ y _ {i} \} $ are proportional. For $ p = 2 $ Minkowski's inequality is called the triangle inequality. Minkowski's inequality can be generalized in various ways (also called Minkowski inequalities). Below some of them are listed.
Minkowski's inequality for sums. Let $ x _ {ij} \geq 0 $ for $ i = 1 \dots n $ and $ j = 1 \dots m $ and let $ p > 1 $. Then
$$ \tag{2 } \left [ \sum _ { i= } 1 ^ { n } \left ( \sum _ { j= } 1 ^ { m } x _ {ij} \right ) ^ {p} \right ] ^ {1/p} \leq \ \sum _ { j= } 1 ^ { m } \left ( \sum _ { i= } 1 ^ { n } x _ {ij} ^ {p} \right ) ^ {1/p} . $$
The inequality is reversed for $ p < 1 $, $ p \neq 0 $, and for $ p < 0 $ it is assumed that $ x _ {ij} > 0 $. In each case equality holds if and only if the rows $ \{ x _ {i1} \} \dots \{ x _ {im} \} $ are proportional. There are also generalizations of
for multiple and infinite sums. However, when limit processes are used special attention is required in formulating the case of possible equality (see ).
Inequalities
and (2) are homogeneous with respect to $ \sum $ and therefore have analogues for various means, for example, if $ M _ \phi ( x _ {i} ) = \phi ^ {-} 1 \{ \sum \phi ( x _ {i} ) \} $, where $ \phi ( t) = \mathop{\rm log} t $, then
$$ M _ \phi \left ( \frac{x _ {i} + y _ {i} }{2} \right ) \leq \frac{1}{2} M _ \phi ( x _ {i} ) + \frac{1}{2} M _ \phi ( y _ {i} ) ; $$
for more details see .
Minkowski's inequality for integrals is similar to
and also holds because of the homogeneity with respect to $ \int $. Let $ f , g $ be integrable functions in a domain $ X \subset \mathbf R ^ {n} $ with respect to the volume element $ d V $. Then for $ p > 1 $,
$$ \tag{3 } \left ( \int\limits _ { X } | f + g | ^ {p} d V \right ) ^ {1/p\ } \leq $$
$$ \leq \ \left ( \int\limits _ { X } | f | ^ {p} d V \right ) ^ {1/p} + \left ( \int\limits _ { X } | g | ^ {p} d V \right ) ^ {1/p} . $$
A generalization of (3) to more general functions can be obtained naturally. A further generalization is: If $ k > 1 $, then
$$ \left ( \int\limits \left ( \int\limits f ( x , y ) d y \right ) ^ {k} d x \right ) ^ {1/k} \leq \ \int\limits \left ( \int\limits f ^ { k } ( x , y ) d x \right ) ^ {1/k} d y , $$
where equality holds only if $ f ( x , y ) = \phi ( x) \psi ( y) $.
Other inequalities of Minkowski type:
a) for products: If $ x _ {i} , y _ {i} \geq 0 $, then
$$ \prod _ { i= } 1 ^ { n } ( x _ {i} + y _ {i} ) ^ {1/n} \geq \ \left ( \prod _ { i= } 1 ^ { n } x _ {i} \right ) ^ {1/n} + \left ( \prod _ { i= } 1 ^ { n } y _ {i} \right ) ^ {1/n} ; $$
b) Mahler's inequality: Let $ F ( x) $ be a generalized norm on $ E ^ {n} $ and $ G ( y) $ its polar function; then
$$ ( x , y ) \leq F ( x) G ( y) , $$
where $ ( \cdot , \cdot ) $ is the inner product;
c) for determinants: If $ A , B $ are non-negative Hermitian matrices over $ \mathbf C $, then
$$ ( \mathop{\rm det} ( A + B ) ) ^ {1/n} \geq \ ( \mathop{\rm det} A ) ^ {1/n} + ( \mathop{\rm det} B ) ^ {1/n} . $$
Finally, connected with the name of Minkowski are other inequalities; in particular, in convex analysis and number theory. For example, the Brunn–Minkowski theorem.
References
[1] | H. Minkowski, "Geometrie der Zahlen" , Chelsea, reprint (1953) |
[2] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[3] | E.F. Beckenbach, R. Bellman, "Inequalities" , Springer (1961) |
[4] | M. Marcus, H. Minc, "Survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) |
Comments
A generalized norm on $ E ^ {n} $ is a function $ F $ for which: 1) $ F ( x) > 0 $ for $ x \neq 0 $; 2) $ F ( t x ) = t F ( x) $ for $ t \geq 0 $; and 3) $ F ( x) + F ( y) \geq F ( x + y ) $. The polar form (or polar function) $ G $ of the generalized norm $ F $ is defined by:
$$ G ( y) = \max _ { x } \frac{( x , y ) }{F ( x) } , $$
where $ ( \cdot , \cdot ) $ is the inner product.
References
[a1] | P.S. Bullen, D.S. Mitrinović, P.M. Vasić, "Means and their inequalities" , Reidel (1988) |
Minkowski inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minkowski_inequality&oldid=17387