Namespaces
Variants
Actions

Difference between revisions of "Minimax statistical procedure"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
One of the versions of optimality in mathematical statistics, according to which a statistical procedure is pronounced optimal in the minimax sense if it minimizes the maximal risk. In terms of decision functions (cf. [[Decision-function(2)|Decision function]]) the notion of a minimax statistical procedure is defined as follows. Let a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639701.png" /> take values in a sampling space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639703.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639704.png" /> be the class of decision functions which are used to make a decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639705.png" /> from the decision space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639706.png" /> on the basis of a realization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639707.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639708.png" />. In this connection, the loss function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m0639709.png" />, defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397010.png" />, is assumed given. In such a case a statistical procedure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397011.png" /> is called a minimax procedure in the problem of making a statistical decision relative to the loss function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397012.png" /> if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397013.png" />,
+
<!--
 +
m0639701.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/M063/M.0603970 Minimax statistical procedure
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397014.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
One of the versions of optimality in mathematical statistics, according to which a statistical procedure is pronounced optimal in the minimax sense if it minimizes the maximal risk. In terms of decision functions (cf. [[Decision-function(2)|Decision function]]) the notion of a minimax statistical procedure is defined as follows. Let a random variable  $  X $
 +
take values in a sampling space  $  ( \mathfrak X , \mathfrak B , {\mathsf P} _  \theta  ) $,
 +
$  \theta \in \Theta $,
 +
and let  $  \Delta = \{ \delta \} $
 +
be the class of decision functions which are used to make a decision  $  d $
 +
from the decision space  $  D $
 +
on the basis of a realization of  $  X $,
 +
that is,  $  \delta ( \cdot ) : \mathfrak X \rightarrow D $.  
 +
In this connection, the loss function  $  L ( \theta , d) $,
 +
defined on  $  \Theta \times D $,
 +
is assumed given. In such a case a statistical procedure  $  \delta  ^ {*} \in \Delta $
 +
is called a minimax procedure in the problem of making a statistical decision relative to the loss function  $  L ( \theta , d ) $
 +
if for all  $  \delta \in \Delta $,
 +
 
 +
$$
 +
\sup _ {\theta \in \Theta } \
 +
{\mathsf E} _  \theta  L ( \theta , \delta  ^ {*} ( X) )
 +
\leq  \sup _ {\theta \in \Theta } \
 +
{\mathsf E} _  \theta  L ( \theta , \delta ( X) ) ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397015.png" /></td> </tr></table>
+
$$
 +
{\mathsf E} _  \theta  L ( \theta , \delta ( X) )  = \
 +
R ( \theta , \delta )  = \
 +
\int\limits _ { \mathfrak X } L ( \theta , \delta ( X) ) \
 +
d {\mathsf P} _  \theta  ( x)
 +
$$
  
is the risk function associated to the statistical procedure (decision rule) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397016.png" />; the decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397017.png" /> corresponding to an observation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397018.png" /> and the minimax procedure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397019.png" /> is called the minimax decision. Since the quantity
+
is the risk function associated to the statistical procedure (decision rule) $  \delta $;  
 +
the decision $  d  ^ {*} = \delta  ^ {*} ( x) $
 +
corresponding to an observation $  x $
 +
and the minimax procedure $  \delta  ^ {*} $
 +
is called the minimax decision. Since the quantity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397020.png" /></td> </tr></table>
+
$$
 +
\sup _ {\theta \in \Theta } \
 +
{\mathsf E} _  \theta  L ( \theta , \delta ( X) )
 +
$$
  
shows the expected loss under the procedure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397022.png" /> being maximal means that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397023.png" /> is used to choose a decision <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397024.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397025.png" />, then the largest expected risk,
+
shows the expected loss under the procedure $  \delta \in \Delta $,  
 +
$  \delta  ^ {*} $
 +
being maximal means that if $  \delta  ^ {*} $
 +
is used to choose a decision $  d $
 +
from $  D $,  
 +
then the largest expected risk,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397026.png" /></td> </tr></table>
+
$$
 +
\sup _ {\theta \in \Theta } \
 +
R ( \theta , \delta  ^ {*} ) ,
 +
$$
  
 
will be as small as possible.
 
will be as small as possible.
Line 21: Line 70:
 
Figure: m063970a
 
Figure: m063970a
  
The minimax principle for a statistical procedure does not always lead to a reasonable conclusion (see Fig. a); in this case one must be guided by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397027.png" /> and not by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397028.png" />, although
+
The minimax principle for a statistical procedure does not always lead to a reasonable conclusion (see Fig. a); in this case one must be guided by $  \delta _ {1} $
 +
and not by $  \delta _ {2} $,  
 +
although
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397029.png" /></td> </tr></table>
+
$$
 +
\sup _ {\theta \in \Theta } \
 +
R ( \theta , \delta _ {1} )  > \
 +
\sup _ {\theta \in \Theta } \
 +
R ( \theta , \delta _ {2} ) .
 +
$$
  
The notion of a minimax statistical procedure is useful in problems of statistical decision making in the absence of a priori information regarding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063970/m06397030.png" />.
+
The notion of a minimax statistical procedure is useful in problems of statistical decision making in the absence of a priori information regarding $  \theta $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR></table>

Latest revision as of 08:00, 6 June 2020


One of the versions of optimality in mathematical statistics, according to which a statistical procedure is pronounced optimal in the minimax sense if it minimizes the maximal risk. In terms of decision functions (cf. Decision function) the notion of a minimax statistical procedure is defined as follows. Let a random variable $ X $ take values in a sampling space $ ( \mathfrak X , \mathfrak B , {\mathsf P} _ \theta ) $, $ \theta \in \Theta $, and let $ \Delta = \{ \delta \} $ be the class of decision functions which are used to make a decision $ d $ from the decision space $ D $ on the basis of a realization of $ X $, that is, $ \delta ( \cdot ) : \mathfrak X \rightarrow D $. In this connection, the loss function $ L ( \theta , d) $, defined on $ \Theta \times D $, is assumed given. In such a case a statistical procedure $ \delta ^ {*} \in \Delta $ is called a minimax procedure in the problem of making a statistical decision relative to the loss function $ L ( \theta , d ) $ if for all $ \delta \in \Delta $,

$$ \sup _ {\theta \in \Theta } \ {\mathsf E} _ \theta L ( \theta , \delta ^ {*} ( X) ) \leq \sup _ {\theta \in \Theta } \ {\mathsf E} _ \theta L ( \theta , \delta ( X) ) , $$

where

$$ {\mathsf E} _ \theta L ( \theta , \delta ( X) ) = \ R ( \theta , \delta ) = \ \int\limits _ { \mathfrak X } L ( \theta , \delta ( X) ) \ d {\mathsf P} _ \theta ( x) $$

is the risk function associated to the statistical procedure (decision rule) $ \delta $; the decision $ d ^ {*} = \delta ^ {*} ( x) $ corresponding to an observation $ x $ and the minimax procedure $ \delta ^ {*} $ is called the minimax decision. Since the quantity

$$ \sup _ {\theta \in \Theta } \ {\mathsf E} _ \theta L ( \theta , \delta ( X) ) $$

shows the expected loss under the procedure $ \delta \in \Delta $, $ \delta ^ {*} $ being maximal means that if $ \delta ^ {*} $ is used to choose a decision $ d $ from $ D $, then the largest expected risk,

$$ \sup _ {\theta \in \Theta } \ R ( \theta , \delta ^ {*} ) , $$

will be as small as possible.

Figure: m063970a

The minimax principle for a statistical procedure does not always lead to a reasonable conclusion (see Fig. a); in this case one must be guided by $ \delta _ {1} $ and not by $ \delta _ {2} $, although

$$ \sup _ {\theta \in \Theta } \ R ( \theta , \delta _ {1} ) > \ \sup _ {\theta \in \Theta } \ R ( \theta , \delta _ {2} ) . $$

The notion of a minimax statistical procedure is useful in problems of statistical decision making in the absence of a priori information regarding $ \theta $.

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
[2] S. Zacks, "The theory of statistical inference" , Wiley (1971)
How to Cite This Entry:
Minimax statistical procedure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimax_statistical_procedure&oldid=15340
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article