|
|
Line 1: |
Line 1: |
− | The usual equation to describe the conversion of a substrate in an enzymatic reaction. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101301.png" /> be the concentration of some substrate which is converted by an enzyme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101302.png" /> into a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101303.png" />. The reaction rate is proportional to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101304.png" /> for small values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101305.png" />, but there is a maximum rate, which is not surpassed even for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101306.png" />. These observations can be expressed by the equation
| + | <!-- |
| + | m1101301.png |
| + | $#A+1 = 54 n = 0 |
| + | $#C+1 = 54 : ~/encyclopedia/old_files/data/M110/M.1100130 Michaelis\ANDMenten equation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101307.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | In this case the first reaction parameter, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101308.png" />, describes the maximal conversion speed, and the second reaction parameter, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m1101309.png" />, is equal to the substrate concentration at which the reaction speed is exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013010.png" />. For small values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013011.png" />, the reaction rate is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013012.png" />.
| + | The usual equation to describe the conversion of a substrate in an enzymatic reaction. Let $ S ( t ) $ |
| + | be the concentration of some substrate which is converted by an enzyme $ E $ |
| + | into a product $ P $. |
| + | The reaction rate is proportional to $ S ( t ) $ |
| + | for small values of $ S ( t ) $, |
| + | but there is a maximum rate, which is not surpassed even for large $ S ( t ) $. |
| + | These observations can be expressed by the equation |
| | | |
− | The equation can be derived from the chemical equilibrium reactions between the substrate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013013.png" /> and the enzyme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013014.png" />, which combine to a compound <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013015.png" />. This compound is rearranged in an equilibrium reaction into a compound <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013016.png" />, which dissociates into the enzyme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013017.png" /> and product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013018.png" />. In a formula:
| + | $$ |
| + | { |
| + | \frac{d S ( t ) }{dt } |
| + | } = - { |
| + | \frac{k _ {a} \cdot S ( t ) }{K + S ( t ) } |
| + | } . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013019.png" /></td> </tr></table>
| + | In this case the first reaction parameter, $ k _ {a} $, |
| + | describes the maximal conversion speed, and the second reaction parameter, $ K $, |
| + | is equal to the substrate concentration at which the reaction speed is exactly $ { {k _ {a} } / 2 } $. |
| + | For small values of $ S ( t ) $, |
| + | the reaction rate is $ k _ {a} \cdot K ^ {- 1 } \cdot S ( t ) $. |
| | | |
− | In this reaction, the step from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013020.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013021.png" /> is usually far slower than the other reactions, and if the reaction from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013023.png" /> is irreversible, or if the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013024.png" /> is removed by some transport mechanism, then the two reaction constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013026.png" /> can be discarded, and the rearrangement coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013027.png" /> determines a simplified reaction equation:
| + | The equation can be derived from the chemical equilibrium reactions between the substrate $ S $ |
| + | and the enzyme $ E $, |
| + | which combine to a compound $ ES $. |
| + | This compound is rearranged in an equilibrium reaction into a compound $ EP $, |
| + | which dissociates into the enzyme $ E $ |
| + | and product $ P $. |
| + | In a formula: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013028.png" /></td> </tr></table>
| + | $$ |
| + | S + E \rightleftarrows _ \beta ^ \alpha SE \rightleftarrows _ \mu ^ \gamma EP \rightleftarrows _ \sigma ^ \lambda E + P. |
| + | $$ |
| | | |
− | Putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013029.png" />, the following system of differential equations emerges from the reactions:
| + | In this reaction, the step from $ SE $ |
| + | to $ EP $ |
| + | is usually far slower than the other reactions, and if the reaction from $ EP $ |
| + | to $ E + P $ |
| + | is irreversible, or if the product $ P $ |
| + | is removed by some transport mechanism, then the two reaction constants $ \mu $ |
| + | and $ \sigma $ |
| + | can be discarded, and the rearrangement coefficient $ \gamma $ |
| + | determines a simplified reaction equation: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013030.png" /></td> </tr></table>
| + | $$ |
| + | S + E \rightleftarrows _ \beta ^ \alpha SE { \mathop \rightarrow \limits ^ \gamma } E + P. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013031.png" /></td> </tr></table>
| + | Putting $ B = SE $, |
| + | the following system of differential equations emerges from the reactions: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013032.png" /></td> </tr></table>
| + | $$ |
| + | { |
| + | \frac{dS ( t ) }{dt } |
| + | } = \beta \cdot B - \alpha \cdot S ( t ) \cdot E, |
| + | $$ |
| | | |
− | These equations imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013033.png" /> is a constant, representing the maximal amount of either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013034.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013035.png" />. Usually, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013036.png" /> is large with respect to fluctuations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013037.png" /> and so the reaction enters a steady state, in which the concentrations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013039.png" /> remain almost constant over a large time interval. In that case the proportion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013040.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013041.png" />, which yields
| + | $$ |
| + | { |
| + | \frac{dE }{dt } |
| + | } = ( \beta + \gamma ) \cdot B - \alpha \cdot S ( t ) \cdot E, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013042.png" /></td> </tr></table>
| + | $$ |
| + | { |
| + | \frac{dB }{dt } |
| + | } = \alpha \cdot S ( t ) \cdot E + ( \beta + \gamma ) \cdot B. |
| + | $$ |
| + | |
| + | These equations imply that $ E + B = E _ {0} $ |
| + | is a constant, representing the maximal amount of either $ E $ |
| + | or $ B $. |
| + | Usually, $ S ( t ) $ |
| + | is large with respect to fluctuations in $ E _ {0} $ |
| + | and so the reaction enters a steady state, in which the concentrations of $ E $ |
| + | and $ B $ |
| + | remain almost constant over a large time interval. In that case the proportion $ E \simeq B $ |
| + | equals $ \beta + \gamma \simeq \alpha \cdot S ( t ) $, |
| + | which yields |
| + | |
| + | $$ |
| + | B = { |
| + | \frac{\alpha \cdot S ( t ) \cdot E _ {0} }{\gamma + \beta + \alpha \cdot S ( t ) } |
| + | } , |
| + | $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013043.png" /></td> </tr></table>
| + | $$ |
| + | { |
| + | \frac{dS ( t ) }{dt } |
| + | } = \beta \cdot B - \alpha \cdot S ( t ) \cdot E = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013044.png" /></td> </tr></table>
| + | $$ |
| + | = |
| + | - \gamma \cdot B = - { |
| + | \frac{\alpha \cdot \gamma \cdot E _ {0} \cdot S ( t ) }{\gamma + \beta + \alpha \cdot S ( t ) } |
| + | } . |
| + | $$ |
| | | |
− | The values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013046.png" /> can be inferred from the differential equation. This gives: | + | The values of $ K $ |
| + | and $ k _ {a} $ |
| + | can be inferred from the differential equation. This gives: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013047.png" /></td> </tr></table>
| + | $$ |
| + | K = { |
| + | \frac{\gamma + \beta } \alpha |
| + | } , k _ {a} = \gamma \cdot E _ {0} , |
| + | $$ |
| | | |
| and so | | and so |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013048.png" /></td> </tr></table>
| + | $$ |
| + | { |
| + | \frac{dS ( t ) }{dt } |
| + | } = - { |
| + | \frac{k _ {a} \cdot S ( t ) }{K + S ( t ) } |
| + | } . |
| + | $$ |
| | | |
− | The values can be fitted from observations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013049.png" />, but it is impossible to also find the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013052.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013053.png" /> from the curve of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110130/m11013054.png" />. | + | The values can be fitted from observations of $ S ( t ) $, |
| + | but it is impossible to also find the parameters $ \alpha $, |
| + | $ \beta $, |
| + | $ \gamma $, |
| + | and $ E _ {0} $ |
| + | from the curve of $ S ( t ) $. |
| | | |
| The equation was derived by L. Michaelis and M.L. Menten [[#References|[a1]]]. | | The equation was derived by L. Michaelis and M.L. Menten [[#References|[a1]]]. |
The usual equation to describe the conversion of a substrate in an enzymatic reaction. Let $ S ( t ) $
be the concentration of some substrate which is converted by an enzyme $ E $
into a product $ P $.
The reaction rate is proportional to $ S ( t ) $
for small values of $ S ( t ) $,
but there is a maximum rate, which is not surpassed even for large $ S ( t ) $.
These observations can be expressed by the equation
$$
{
\frac{d S ( t ) }{dt }
} = - {
\frac{k _ {a} \cdot S ( t ) }{K + S ( t ) }
} .
$$
In this case the first reaction parameter, $ k _ {a} $,
describes the maximal conversion speed, and the second reaction parameter, $ K $,
is equal to the substrate concentration at which the reaction speed is exactly $ { {k _ {a} } / 2 } $.
For small values of $ S ( t ) $,
the reaction rate is $ k _ {a} \cdot K ^ {- 1 } \cdot S ( t ) $.
The equation can be derived from the chemical equilibrium reactions between the substrate $ S $
and the enzyme $ E $,
which combine to a compound $ ES $.
This compound is rearranged in an equilibrium reaction into a compound $ EP $,
which dissociates into the enzyme $ E $
and product $ P $.
In a formula:
$$
S + E \rightleftarrows _ \beta ^ \alpha SE \rightleftarrows _ \mu ^ \gamma EP \rightleftarrows _ \sigma ^ \lambda E + P.
$$
In this reaction, the step from $ SE $
to $ EP $
is usually far slower than the other reactions, and if the reaction from $ EP $
to $ E + P $
is irreversible, or if the product $ P $
is removed by some transport mechanism, then the two reaction constants $ \mu $
and $ \sigma $
can be discarded, and the rearrangement coefficient $ \gamma $
determines a simplified reaction equation:
$$
S + E \rightleftarrows _ \beta ^ \alpha SE { \mathop \rightarrow \limits ^ \gamma } E + P.
$$
Putting $ B = SE $,
the following system of differential equations emerges from the reactions:
$$
{
\frac{dS ( t ) }{dt }
} = \beta \cdot B - \alpha \cdot S ( t ) \cdot E,
$$
$$
{
\frac{dE }{dt }
} = ( \beta + \gamma ) \cdot B - \alpha \cdot S ( t ) \cdot E,
$$
$$
{
\frac{dB }{dt }
} = \alpha \cdot S ( t ) \cdot E + ( \beta + \gamma ) \cdot B.
$$
These equations imply that $ E + B = E _ {0} $
is a constant, representing the maximal amount of either $ E $
or $ B $.
Usually, $ S ( t ) $
is large with respect to fluctuations in $ E _ {0} $
and so the reaction enters a steady state, in which the concentrations of $ E $
and $ B $
remain almost constant over a large time interval. In that case the proportion $ E \simeq B $
equals $ \beta + \gamma \simeq \alpha \cdot S ( t ) $,
which yields
$$
B = {
\frac{\alpha \cdot S ( t ) \cdot E _ {0} }{\gamma + \beta + \alpha \cdot S ( t ) }
} ,
$$
and
$$
{
\frac{dS ( t ) }{dt }
} = \beta \cdot B - \alpha \cdot S ( t ) \cdot E =
$$
$$
=
- \gamma \cdot B = - {
\frac{\alpha \cdot \gamma \cdot E _ {0} \cdot S ( t ) }{\gamma + \beta + \alpha \cdot S ( t ) }
} .
$$
The values of $ K $
and $ k _ {a} $
can be inferred from the differential equation. This gives:
$$
K = {
\frac{\gamma + \beta } \alpha
} , k _ {a} = \gamma \cdot E _ {0} ,
$$
and so
$$
{
\frac{dS ( t ) }{dt }
} = - {
\frac{k _ {a} \cdot S ( t ) }{K + S ( t ) }
} .
$$
The values can be fitted from observations of $ S ( t ) $,
but it is impossible to also find the parameters $ \alpha $,
$ \beta $,
$ \gamma $,
and $ E _ {0} $
from the curve of $ S ( t ) $.
The equation was derived by L. Michaelis and M.L. Menten [a1].
References
[a1] | L. Michaelis, M.L. Menten, "Die Kinetik der Invertinwirkung" Biochem. Zeitschrift , 2 (1913) pp. 333–369 |