Namespaces
Variants
Actions

Difference between revisions of "Meromorphic mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0634701.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/M063/M.0603470 Meromorphic mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of complex spaces''
 
''of complex spaces''
  
A generalization of the notion of a [[Meromorphic function|meromorphic function]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634701.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634702.png" /> be complex spaces (cf. [[Complex space|Complex space]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634703.png" /> be an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634704.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634705.png" /> is a nowhere-dense analytic subset (cf. [[Analytic set|Analytic set]]) and suppose that an [[Analytic mapping|analytic mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634706.png" /> has been given. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634707.png" /> is called a meromorphic mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634708.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m0634709.png" /> if the closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347010.png" /> of the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347013.png" /> is an analytic subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347014.png" /> and if the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347015.png" /> is a proper mapping (cf. also [[Proper morphism|Proper morphism]]). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347016.png" /> is called the graph of the meromorphic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347017.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347018.png" /> is surjective and defines a bijective mapping of the set of irreducible components. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347019.png" /> denotes the largest open subset to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347020.png" /> can be extended as an analytic mapping, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347021.png" /> is a nowhere-dense analytic subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347022.png" />, called the set of indeterminacy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347023.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347024.png" /> is open and dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347025.png" />; also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347027.png" /> is analytic and nowhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347028.png" />. The restriction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347029.png" /> is an isomorphism of analytic spaces. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347030.png" /> is a normal complex space (cf. [[Normal analytic space|Normal analytic space]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347032.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347034.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347035.png" /> is not normal, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347036.png" /> may consist of a finite number of points, even if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347037.png" />. In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347038.png" /> the notion of a meromorphic mapping reduces to that of a meromorphic function.
+
A generalization of the notion of a [[Meromorphic function|meromorphic function]]. Let $  X $
 +
and $  Y $
 +
be complex spaces (cf. [[Complex space|Complex space]]), let $  A $
 +
be an open subset of $  X $
 +
such that $  X \setminus  A $
 +
is a nowhere-dense analytic subset (cf. [[Analytic set|Analytic set]]) and suppose that an [[Analytic mapping|analytic mapping]] $  f: A \rightarrow Y $
 +
has been given. Then $  f $
 +
is called a meromorphic mapping of $  X $
 +
into $  Y $
 +
if the closure $  \Gamma _ {f} $
 +
of the graph $  A  ^  \star  $
 +
of $  f $
 +
in $  X \times Y $
 +
is an analytic subset of $  X \times Y $
 +
and if the projection $  \pi : \Gamma _ {f} \rightarrow X $
 +
is a proper mapping (cf. also [[Proper morphism|Proper morphism]]). The set $  \Gamma _ {f} $
 +
is called the graph of the meromorphic mapping $  f $.  
 +
The mapping $  \pi : \Gamma _ {f} \rightarrow X $
 +
is surjective and defines a bijective mapping of the set of irreducible components. If $  A _ {0}  ^ {f} \subset  X $
 +
denotes the largest open subset to which $  f $
 +
can be extended as an analytic mapping, then $  I _ {f} = X \setminus  A _ {0}  ^ {f} $
 +
is a nowhere-dense analytic subset of $  X $,  
 +
called the set of indeterminacy of $  f $.  
 +
The set $  \pi  ^ {-} 1 ( A _ {0}  ^ {f} ) = A _ {0} ^ {f \star } $
 +
is open and dense in $  \Gamma _ {f} $;  
 +
also, $  A  ^  \star  \subseteq A _ {0} ^ {f \star } $
 +
and $  \Gamma _ {f} \setminus  A _ {0} ^ {f \star } $
 +
is analytic and nowhere dense in $  \Gamma _ {f} $.  
 +
The restriction $  \pi :  A _ {0} ^ {f\star } \rightarrow A _ {0}  ^ {f} $
 +
is an isomorphism of analytic spaces. If $  X $
 +
is a normal complex space (cf. [[Normal analytic space|Normal analytic space]]), then $  \mathop{\rm codim}  I _ {f} \geq  2 $
 +
and  $  \mathop{\rm dim} _ {z}  \pi  ^ {-} 1 ( x) > 0 $
 +
if and only if $  z \in \pi  ^ {-} 1 ( x) $
 +
and $  x \in I _ {f} $.  
 +
If $  X $
 +
is not normal, $  \pi  ^ {-} 1 ( x) $
 +
may consist of a finite number of points, even if $  x \in I _ {f} $.  
 +
In the case $  Y = \mathbf C P  ^ {1} $
 +
the notion of a meromorphic mapping reduces to that of a meromorphic function.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347041.png" /> be meromorphic mappings of complex spaces. One says that the composite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347042.png" /> of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347044.png" /> is defined and equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347045.png" /> if there is an open dense subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347046.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347047.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347050.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347051.png" />. A meromorphic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347052.png" /> is called bimeromorphic if there is a meromorphic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347053.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347055.png" />. Composition of two bimeromorphic mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063470/m06347057.png" /> is always defined.
+
Let $  f: X \rightarrow Y $,  
 +
$  g: Y \rightarrow Z $,  
 +
$  k: X \rightarrow Z $
 +
be meromorphic mappings of complex spaces. One says that the composite $  g \circ f $
 +
of the mappings $  f $
 +
and $  g $
 +
is defined and equals $  k $
 +
if there is an open dense subset $  U $
 +
of $  X $
 +
such that $  U \subseteq A _ {0}  ^ {f} $,  
 +
$  f( U) \subset  A _ {0}  ^ {g} $,  
 +
$  U \subset  A _ {0}  ^ {k} $,  
 +
and $  k | _ {U} = g \circ f | _ {U} $.  
 +
A meromorphic mapping $  f: X \rightarrow Y $
 +
is called bimeromorphic if there is a meromorphic mapping $  g : Y \rightarrow X $
 +
such that $  f \circ g = 1 \mid  _ {Y} $
 +
and $  g \circ f = 1 \mid  _ {X} $.  
 +
Composition of two bimeromorphic mappings $  X \rightarrow Y $
 +
and $  Y \rightarrow Z $
 +
is always defined.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Andreotti,  W. Stoll,  "Analytic and algebraic dependence of meromorphic functions" , Springer  (1971)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Remmert,  "Holomorphe und meromorphe Abbildungen komplexer Räume"  ''Math. Ann.'' , '''133''' :  3  (1957)  pp. 328–370</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Andreotti,  W. Stoll,  "Analytic and algebraic dependence of meromorphic functions" , Springer  (1971)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R. Remmert,  "Holomorphe und meromorphe Abbildungen komplexer Räume"  ''Math. Ann.'' , '''133''' :  3  (1957)  pp. 328–370</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Whitney,  "Complex analytic varieties" , Addison-Wesley  (1972)  pp. Sect. 6.3</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Whitney,  "Complex analytic varieties" , Addison-Wesley  (1972)  pp. Sect. 6.3</TD></TR></table>

Latest revision as of 08:00, 6 June 2020


of complex spaces

A generalization of the notion of a meromorphic function. Let $ X $ and $ Y $ be complex spaces (cf. Complex space), let $ A $ be an open subset of $ X $ such that $ X \setminus A $ is a nowhere-dense analytic subset (cf. Analytic set) and suppose that an analytic mapping $ f: A \rightarrow Y $ has been given. Then $ f $ is called a meromorphic mapping of $ X $ into $ Y $ if the closure $ \Gamma _ {f} $ of the graph $ A ^ \star $ of $ f $ in $ X \times Y $ is an analytic subset of $ X \times Y $ and if the projection $ \pi : \Gamma _ {f} \rightarrow X $ is a proper mapping (cf. also Proper morphism). The set $ \Gamma _ {f} $ is called the graph of the meromorphic mapping $ f $. The mapping $ \pi : \Gamma _ {f} \rightarrow X $ is surjective and defines a bijective mapping of the set of irreducible components. If $ A _ {0} ^ {f} \subset X $ denotes the largest open subset to which $ f $ can be extended as an analytic mapping, then $ I _ {f} = X \setminus A _ {0} ^ {f} $ is a nowhere-dense analytic subset of $ X $, called the set of indeterminacy of $ f $. The set $ \pi ^ {-} 1 ( A _ {0} ^ {f} ) = A _ {0} ^ {f \star } $ is open and dense in $ \Gamma _ {f} $; also, $ A ^ \star \subseteq A _ {0} ^ {f \star } $ and $ \Gamma _ {f} \setminus A _ {0} ^ {f \star } $ is analytic and nowhere dense in $ \Gamma _ {f} $. The restriction $ \pi : A _ {0} ^ {f\star } \rightarrow A _ {0} ^ {f} $ is an isomorphism of analytic spaces. If $ X $ is a normal complex space (cf. Normal analytic space), then $ \mathop{\rm codim} I _ {f} \geq 2 $ and $ \mathop{\rm dim} _ {z} \pi ^ {-} 1 ( x) > 0 $ if and only if $ z \in \pi ^ {-} 1 ( x) $ and $ x \in I _ {f} $. If $ X $ is not normal, $ \pi ^ {-} 1 ( x) $ may consist of a finite number of points, even if $ x \in I _ {f} $. In the case $ Y = \mathbf C P ^ {1} $ the notion of a meromorphic mapping reduces to that of a meromorphic function.

Let $ f: X \rightarrow Y $, $ g: Y \rightarrow Z $, $ k: X \rightarrow Z $ be meromorphic mappings of complex spaces. One says that the composite $ g \circ f $ of the mappings $ f $ and $ g $ is defined and equals $ k $ if there is an open dense subset $ U $ of $ X $ such that $ U \subseteq A _ {0} ^ {f} $, $ f( U) \subset A _ {0} ^ {g} $, $ U \subset A _ {0} ^ {k} $, and $ k | _ {U} = g \circ f | _ {U} $. A meromorphic mapping $ f: X \rightarrow Y $ is called bimeromorphic if there is a meromorphic mapping $ g : Y \rightarrow X $ such that $ f \circ g = 1 \mid _ {Y} $ and $ g \circ f = 1 \mid _ {X} $. Composition of two bimeromorphic mappings $ X \rightarrow Y $ and $ Y \rightarrow Z $ is always defined.

References

[1] A. Andreotti, W. Stoll, "Analytic and algebraic dependence of meromorphic functions" , Springer (1971)
[2] R. Remmert, "Holomorphe und meromorphe Abbildungen komplexer Räume" Math. Ann. , 133 : 3 (1957) pp. 328–370

Comments

References

[a1] H. Whitney, "Complex analytic varieties" , Addison-Wesley (1972) pp. Sect. 6.3
How to Cite This Entry:
Meromorphic mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meromorphic_mapping&oldid=13951
This article was adapted from an original article by D.A. Ponomarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article