|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Originally, a measurable function was understood to be a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632001.png" /> of a real variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632002.png" /> with the property that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632003.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632004.png" /> of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632005.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632006.png" /> is a (Lebesgue-) [[Measurable set|measurable set]]. A measurable function on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632007.png" /> can be made continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m0632008.png" /> by changing its values on a set of arbitrarily small measure; this is the so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320010.png" />-property of measurable functions (N.N. Luzin, 1913, cf. also [[Luzin-C-property|Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320011.png" />-property]]).
| + | <!-- |
| + | m0632001.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/M063/M.0603200 Measurable function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A measurable function on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320012.png" /> is defined relative to a chosen system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320013.png" /> of measurable sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320015.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320016.png" />-ring, then a real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320017.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320018.png" /> is said to be a measurable function if
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320019.png" /></td> </tr></table>
| + | {{MSC|28A20}} |
| | | |
− | for every real number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320020.png" />, where
| + | [[Category:Classical measure theory]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320021.png" /></td> </tr></table> | + | Originally, a measurable function was understood to be a function $ f ( x) $ |
| + | of a real variable $ x $ |
| + | with the property that for every $ a $ |
| + | the set $ E _ {a} $ |
| + | of points $ x $ |
| + | at which $ f ( x) < a $ |
| + | is a (Lebesgue-) [[Measurable set|measurable set]]. A measurable function on an interval $ [ x _ {1} , x _ {2} ] $ |
| + | can be made continuous on $ [ x _ {1} , x _ {2} ] $ |
| + | by changing its values on a set of arbitrarily small measure; this is the so-called $ C $- |
| + | property of measurable functions (N.N. Luzin, 1913, cf. also [[Luzin-C-property|Luzin $ C $- |
| + | property]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320022.png" /></td> </tr></table>
| + | A measurable function on a space $ X $ |
| + | is defined relative to a chosen system $ A $ |
| + | of measurable sets in $ X $. |
| + | If $ A $ |
| + | is a $ \sigma $- |
| + | ring, then a real-valued function $ f $ |
| + | on $ X $ |
| + | is said to be a measurable function if |
| | | |
− | This definition is equivalent to the following: A real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320023.png" /> is measurable if
| + | $$ |
| + | R _ {f} \cap E _ {a} \in A |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320024.png" /></td> </tr></table>
| + | for every real number $ a $, |
| + | where |
| | | |
− | for every [[Borel set|Borel set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320025.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320026.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320027.png" />-algebra, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320028.png" /> is measurable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320029.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320030.png" />) is measurable. The class of measurable functions is closed under the arithmetical and lattice operations; that is, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320032.png" /> are measurable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320037.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320038.png" /> real) are measurable; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063200/m06320040.png" /> are also measurable. A complex-valued function is measurable if its real and imaginary parts are measurable. A generalization of the concept of a measurable function is that of a [[Measurable mapping|measurable mapping]] from one [[Measurable space|measurable space]] to another. | + | $$ |
| + | E _ {a} = \{ {x \in X } : {f ( x) < a } \} |
| + | , |
| + | $$ |
| + | |
| + | $$ |
| + | R _ {f} = \{ x \in X: f ( x) \neq 0 \} . |
| + | $$ |
| + | |
| + | This definition is equivalent to the following: A real-valued function $ f $ |
| + | is measurable if |
| + | |
| + | $$ |
| + | R _ {f} \cap \{ {x \in X } : {f ( x) \in B } \} |
| + | \in A |
| + | $$ |
| + | |
| + | for every [[Borel set|Borel set]] $ B $. |
| + | When $ A $ |
| + | is a $ \sigma $- |
| + | algebra, a function $ f $ |
| + | is measurable if $ E _ {a} $( |
| + | or $ \{ {x \in X } : {f ( x) \in B } \} $) |
| + | is measurable. The class of measurable functions is closed under the arithmetical and lattice operations; that is, if $ f _ {n} $, |
| + | $ n = 1, 2 \dots $ |
| + | are measurable, then $ f _ {1} + f _ {2} $, |
| + | $ f _ {1} f _ {2} $, |
| + | $ \max ( f _ {1} , f _ {2} ) $, |
| + | $ \min ( f _ {1} , f _ {2} ) $ |
| + | and $ af $( |
| + | $ a $ |
| + | real) are measurable; $ \overline{\lim\limits}\; f _ {n} $ |
| + | and $ fnnme \underline{lim} f _ {n} $ |
| + | are also measurable. A complex-valued function is measurable if its real and imaginary parts are measurable. A generalization of the concept of a measurable function is that of a [[Measurable mapping|measurable mapping]] from one [[Measurable space|measurable space]] to another. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR></table>
| + | {| |
| + | |valign="top"|{{Ref|H}}|| P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} |
| + | |- |
| + | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} {{ZBL|}} |
| + | |- |
| + | |valign="top"|{{Ref|KF}}|| A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian) {{MR|1025126}} {{MR|0708717}} {{MR|0630899}} {{MR|0435771}} {{MR|0377444}} {{MR|0234241}} {{MR|0215962}} {{MR|0118796}} {{MR|1530727}} {{MR|0118795}} {{MR|0085462}} {{MR|0070045}} {{ZBL|0932.46001}} {{ZBL|0672.46001}} {{ZBL|0501.46001}} {{ZBL|0501.46002}} {{ZBL|0235.46001}} {{ZBL|0103.08801}} |
| + | |} |
2020 Mathematics Subject Classification: Primary: 28A20 [MSN][ZBL]
Originally, a measurable function was understood to be a function $ f ( x) $
of a real variable $ x $
with the property that for every $ a $
the set $ E _ {a} $
of points $ x $
at which $ f ( x) < a $
is a (Lebesgue-) measurable set. A measurable function on an interval $ [ x _ {1} , x _ {2} ] $
can be made continuous on $ [ x _ {1} , x _ {2} ] $
by changing its values on a set of arbitrarily small measure; this is the so-called $ C $-
property of measurable functions (N.N. Luzin, 1913, cf. also Luzin $ C $-
property).
A measurable function on a space $ X $
is defined relative to a chosen system $ A $
of measurable sets in $ X $.
If $ A $
is a $ \sigma $-
ring, then a real-valued function $ f $
on $ X $
is said to be a measurable function if
$$
R _ {f} \cap E _ {a} \in A
$$
for every real number $ a $,
where
$$
E _ {a} = \{ {x \in X } : {f ( x) < a } \}
,
$$
$$
R _ {f} = \{ x \in X: f ( x) \neq 0 \} .
$$
This definition is equivalent to the following: A real-valued function $ f $
is measurable if
$$
R _ {f} \cap \{ {x \in X } : {f ( x) \in B } \}
\in A
$$
for every Borel set $ B $.
When $ A $
is a $ \sigma $-
algebra, a function $ f $
is measurable if $ E _ {a} $(
or $ \{ {x \in X } : {f ( x) \in B } \} $)
is measurable. The class of measurable functions is closed under the arithmetical and lattice operations; that is, if $ f _ {n} $,
$ n = 1, 2 \dots $
are measurable, then $ f _ {1} + f _ {2} $,
$ f _ {1} f _ {2} $,
$ \max ( f _ {1} , f _ {2} ) $,
$ \min ( f _ {1} , f _ {2} ) $
and $ af $(
$ a $
real) are measurable; $ \overline{\lim\limits}\; f _ {n} $
and $ fnnme \underline{lim} f _ {n} $
are also measurable. A complex-valued function is measurable if its real and imaginary parts are measurable. A generalization of the concept of a measurable function is that of a measurable mapping from one measurable space to another.
References
[H] |
P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802
|
[DS] |
N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
|
[KF] |
A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) MR1025126 MR0708717 MR0630899 MR0435771 MR0377444 MR0234241 MR0215962 MR0118796 MR1530727 MR0118795 MR0085462 MR0070045 Zbl 0932.46001 Zbl 0672.46001 Zbl 0501.46001 Zbl 0501.46002 Zbl 0235.46001 Zbl 0103.08801
|