Difference between revisions of "Maximum-entropy spectral estimator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0630901.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/M063/M.0603090 Maximum\AAhentropy spectral estimator, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''auto-regressive spectral estimator'' | ''auto-regressive spectral estimator'' | ||
− | An estimator | + | An estimator $ f _ {q} ^ { * } ( \lambda ) $ |
+ | for the [[Spectral density|spectral density]] $ f ( \lambda ) $ | ||
+ | of a discrete-time stationary stochastic process such that 1) the first $ q $ | ||
+ | values of the auto-correlations are equal to the sample auto-correlations calculated from the observational data, and 2) the [[Entropy|entropy]] of the Gaussian stochastic process with spectral density $ f _ {q} ^ { * } ( \lambda ) $ | ||
+ | is maximized subject to condition 1). If $ N $ | ||
+ | sample values $ x _ {t} $, | ||
+ | $ t = 1 \dots N $, | ||
+ | are known from observing a realization of a real stationary process $ X _ {t} $ | ||
+ | having spectral density $ f ( \lambda ) $, | ||
+ | then the maximum-entropy spectral estimator $ f _ {q} ^ { * } ( \lambda ) $ | ||
+ | is defined by the relations | ||
− | + | $$ \tag{1 } | |
+ | \int\limits _ {- \pi } ^ \pi \cos k \lambda | ||
+ | f _ {q} ^ { * } ( \lambda ) d \lambda = r _ {k} ^ {*\ } \equiv | ||
+ | $$ | ||
− | + | $$ | |
+ | \equiv \ | ||
+ | N ^ {-} 1 \sum _ { j= } 1 ^ { N- } k x _ {j} x _ {j+} k ,\ \ | ||
+ | k = 0 \dots q , | ||
+ | $$ | ||
− | + | $$ \tag{2 } | |
+ | \int\limits _ {- \pi } ^ \pi \mathop{\rm log} f _ {q} ^ { * } ( \lambda ) d \lambda = \max , | ||
+ | $$ | ||
− | where the sign | + | where the sign $ \equiv $ |
+ | denotes "equal by definition" . The maximum-entropy spectral estimator has the form | ||
− | + | $$ \tag{3 } | |
+ | f _ {q} ^ { * } ( \lambda ) = | ||
+ | \frac{\sigma ^ {2} }{2 \pi | 1 + \beta _ {1} \mathop{\rm exp} ( i \lambda ) + \dots | ||
+ | + \beta _ {q} \mathop{\rm exp} ( i q \lambda ) | ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | where the coefficients | + | where the coefficients $ \beta _ {1} \dots \beta _ {q} $ |
+ | and $ \sigma ^ {2} $ | ||
+ | are given by the $ q + 1 $ | ||
+ | equations (1) (see, e.g., [[#References|[1]]], [[#References|[9]]], [[#References|[10]]]). Formula (3) shows that the maximum-entropy spectral estimator coincides with the so-called auto-regressive spectral estimator (introduced in [[#References|[2]]], [[#References|[3]]]). The positive integer $ q $ | ||
+ | here plays a role related to that played by the reciprocal width of a spectral window in the case of non-parametric estimation of the spectral density by periodogram smoothing (see [[Spectral window|Spectral window]]; [[Statistical problems in the theory of stochastic processes|Statistical problems in the theory of stochastic processes]]). There are several methods for estimating the optimal value of $ q $ | ||
+ | from given observations (see, for example, [[#References|[1]]], [[#References|[4]]], [[#References|[5]]], [[#References|[8]]]). The values of the coefficients $ \beta _ {1} \dots \beta _ {q} , \sigma ^ {2} $ | ||
+ | can be found using a solution of the Yule–Walker equations | ||
− | + | $$ \tag{4 } | |
+ | r _ {k} ^ {*} + \sum _ { j= } 1 ^ { q } \beta _ {j} r _ {| k - j | } ^ {*} = 0 ,\ k = 1 \dots q , | ||
+ | $$ | ||
− | + | $$ \tag{5 } | |
+ | r _ {0} ^ {*} + \sum _ { j= } 1 ^ { q } \beta _ {j} r _ {j} ^ {*} = \sigma ^ {2} ; | ||
+ | $$ | ||
there are also other, numerically more convenient, methods for calculating these coefficients (see, e.g., [[#References|[1]]], [[#References|[4]]]–[[#References|[6]]], [[#References|[10]]]). | there are also other, numerically more convenient, methods for calculating these coefficients (see, e.g., [[#References|[1]]], [[#References|[4]]]–[[#References|[6]]], [[#References|[10]]]). | ||
− | In the case of small sample size or spectral densities of complex form, maximum-entropy spectral estimators and parametric spectral estimators (cf. [[Spectral estimator, parametric|Spectral estimator, parametric]]), which generalize them, possess definite advantages over non-parametric estimators of | + | In the case of small sample size or spectral densities of complex form, maximum-entropy spectral estimators and parametric spectral estimators (cf. [[Spectral estimator, parametric|Spectral estimator, parametric]]), which generalize them, possess definite advantages over non-parametric estimators of $ f ( \lambda ) $: |
+ | they usually have a more regular form and possess better resolving power, that is, they permit one to better distinguish close peaks of the graph of the spectral density (see [[#References|[1]]], [[#References|[4]]]–[[#References|[7]]]). Therefore maximum-entropy spectral estimators are widely used in the applied [[Spectral analysis of a stationary stochastic process|spectral analysis of a stationary stochastic process]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.G. Childers (ed.) , ''Modern spectrum analysis'' , IEEE (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Parzen, "An approach to empirical time series analysis" ''Radio Sci.'' , '''68''' (1964) pp. 937–951</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Akaike, "Power spectrum estimation through autoregressive model fitting" ''Ann. Inst. Stat. Math.'' , '''21''' : 3 (1969) pp. 407–419</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Haykin (ed.) , ''Nonlinear methods of spectral analysis'' , Springer (1979)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.M. Kay, S.L. Marpl, "Spectrum analysis—a modern perspective" ''Proc. IEEE'' , '''69''' : 11 (1981) pp. 1380–1419</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> "Spectral estimation" ''Proc. IEEE'' , '''70''' : 9 (1982) ((Special Issue))</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.F. Pisarenko, "Sampling properties of maximum entropy spectral estimation" , ''Numerical Seismology'' , Moscow (1977) pp. 118–149 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> J.G. de Gooyer, B. Abraham, A. Gould, L. Robinson, "Methods for determining the order of an autoregressive-moving average process: A survey" ''Internat. Stat. Rev.'' , '''55''' (1985) pp. 301–329</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M.B. Priestley, "Spectral analysis and time series" , '''1–2''' , Acad. Press (1981)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A. Papoulis, "Probability, random variables and stochastic processes" , McGraw-Hill (1984)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.G. Childers (ed.) , ''Modern spectrum analysis'' , IEEE (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Parzen, "An approach to empirical time series analysis" ''Radio Sci.'' , '''68''' (1964) pp. 937–951</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Akaike, "Power spectrum estimation through autoregressive model fitting" ''Ann. Inst. Stat. Math.'' , '''21''' : 3 (1969) pp. 407–419</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.S. Haykin (ed.) , ''Nonlinear methods of spectral analysis'' , Springer (1979)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.M. Kay, S.L. Marpl, "Spectrum analysis—a modern perspective" ''Proc. IEEE'' , '''69''' : 11 (1981) pp. 1380–1419</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> "Spectral estimation" ''Proc. IEEE'' , '''70''' : 9 (1982) ((Special Issue))</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.F. Pisarenko, "Sampling properties of maximum entropy spectral estimation" , ''Numerical Seismology'' , Moscow (1977) pp. 118–149 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> J.G. de Gooyer, B. Abraham, A. Gould, L. Robinson, "Methods for determining the order of an autoregressive-moving average process: A survey" ''Internat. Stat. Rev.'' , '''55''' (1985) pp. 301–329</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M.B. Priestley, "Spectral analysis and time series" , '''1–2''' , Acad. Press (1981)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A. Papoulis, "Probability, random variables and stochastic processes" , McGraw-Hill (1984)</TD></TR></table> |
Revision as of 08:00, 6 June 2020
auto-regressive spectral estimator
An estimator $ f _ {q} ^ { * } ( \lambda ) $ for the spectral density $ f ( \lambda ) $ of a discrete-time stationary stochastic process such that 1) the first $ q $ values of the auto-correlations are equal to the sample auto-correlations calculated from the observational data, and 2) the entropy of the Gaussian stochastic process with spectral density $ f _ {q} ^ { * } ( \lambda ) $ is maximized subject to condition 1). If $ N $ sample values $ x _ {t} $, $ t = 1 \dots N $, are known from observing a realization of a real stationary process $ X _ {t} $ having spectral density $ f ( \lambda ) $, then the maximum-entropy spectral estimator $ f _ {q} ^ { * } ( \lambda ) $ is defined by the relations
$$ \tag{1 } \int\limits _ {- \pi } ^ \pi \cos k \lambda f _ {q} ^ { * } ( \lambda ) d \lambda = r _ {k} ^ {*\ } \equiv $$
$$ \equiv \ N ^ {-} 1 \sum _ { j= } 1 ^ { N- } k x _ {j} x _ {j+} k ,\ \ k = 0 \dots q , $$
$$ \tag{2 } \int\limits _ {- \pi } ^ \pi \mathop{\rm log} f _ {q} ^ { * } ( \lambda ) d \lambda = \max , $$
where the sign $ \equiv $ denotes "equal by definition" . The maximum-entropy spectral estimator has the form
$$ \tag{3 } f _ {q} ^ { * } ( \lambda ) = \frac{\sigma ^ {2} }{2 \pi | 1 + \beta _ {1} \mathop{\rm exp} ( i \lambda ) + \dots + \beta _ {q} \mathop{\rm exp} ( i q \lambda ) | ^ {2} } , $$
where the coefficients $ \beta _ {1} \dots \beta _ {q} $ and $ \sigma ^ {2} $ are given by the $ q + 1 $ equations (1) (see, e.g., [1], [9], [10]). Formula (3) shows that the maximum-entropy spectral estimator coincides with the so-called auto-regressive spectral estimator (introduced in [2], [3]). The positive integer $ q $ here plays a role related to that played by the reciprocal width of a spectral window in the case of non-parametric estimation of the spectral density by periodogram smoothing (see Spectral window; Statistical problems in the theory of stochastic processes). There are several methods for estimating the optimal value of $ q $ from given observations (see, for example, [1], [4], [5], [8]). The values of the coefficients $ \beta _ {1} \dots \beta _ {q} , \sigma ^ {2} $ can be found using a solution of the Yule–Walker equations
$$ \tag{4 } r _ {k} ^ {*} + \sum _ { j= } 1 ^ { q } \beta _ {j} r _ {| k - j | } ^ {*} = 0 ,\ k = 1 \dots q , $$
$$ \tag{5 } r _ {0} ^ {*} + \sum _ { j= } 1 ^ { q } \beta _ {j} r _ {j} ^ {*} = \sigma ^ {2} ; $$
there are also other, numerically more convenient, methods for calculating these coefficients (see, e.g., [1], [4]–[6], [10]).
In the case of small sample size or spectral densities of complex form, maximum-entropy spectral estimators and parametric spectral estimators (cf. Spectral estimator, parametric), which generalize them, possess definite advantages over non-parametric estimators of $ f ( \lambda ) $: they usually have a more regular form and possess better resolving power, that is, they permit one to better distinguish close peaks of the graph of the spectral density (see [1], [4]–[7]). Therefore maximum-entropy spectral estimators are widely used in the applied spectral analysis of a stationary stochastic process.
References
[1] | D.G. Childers (ed.) , Modern spectrum analysis , IEEE (1978) |
[2] | E. Parzen, "An approach to empirical time series analysis" Radio Sci. , 68 (1964) pp. 937–951 |
[3] | H. Akaike, "Power spectrum estimation through autoregressive model fitting" Ann. Inst. Stat. Math. , 21 : 3 (1969) pp. 407–419 |
[4] | S.S. Haykin (ed.) , Nonlinear methods of spectral analysis , Springer (1979) |
[5] | S.M. Kay, S.L. Marpl, "Spectrum analysis—a modern perspective" Proc. IEEE , 69 : 11 (1981) pp. 1380–1419 |
[6] | "Spectral estimation" Proc. IEEE , 70 : 9 (1982) ((Special Issue)) |
[7] | V.F. Pisarenko, "Sampling properties of maximum entropy spectral estimation" , Numerical Seismology , Moscow (1977) pp. 118–149 (In Russian) |
[8] | J.G. de Gooyer, B. Abraham, A. Gould, L. Robinson, "Methods for determining the order of an autoregressive-moving average process: A survey" Internat. Stat. Rev. , 55 (1985) pp. 301–329 |
[9] | M.B. Priestley, "Spectral analysis and time series" , 1–2 , Acad. Press (1981) |
[10] | A. Papoulis, "Probability, random variables and stochastic processes" , McGraw-Hill (1984) |
Maximum-entropy spectral estimator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximum-entropy_spectral_estimator&oldid=17257