Namespaces
Variants
Actions

Difference between revisions of "Lyapunov stochastic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A non-negative function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611801.png" /> for which the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611802.png" /> is a supermartingale for some random process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611803.png" /> up to the instant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611804.png" /> (cf. also [[Martingale|Martingale]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611805.png" /> is a [[Markov process|Markov process]], then the Lyapunov stochastic function is a function for which the Lyapunov stochastic operator
+
<!--
 +
l0611801.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/L061/L.0601180 Lyapunov stochastic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611806.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611807.png" /></td> </tr></table>
+
A non-negative function  $  V ( t , x ) $
 +
for which the pair  $  ( V ( t , X ( t) ) , F _ {t} ) $
 +
is a supermartingale for some random process  $  X $
 +
up to the instant  $  t $(
 +
cf. also [[Martingale|Martingale]]). If  $  X ( t) $
 +
is a [[Markov process|Markov process]], then the Lyapunov stochastic function is a function for which the Lyapunov stochastic operator
  
is non-positive. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611808.png" /> is the [[Infinitesimal operator|infinitesimal operator]] of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l0611809.png" />, and so the verification of the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118010.png" /> is easily carried out in specific cases. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118011.png" /> goes into the usual Lyapunov operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118012.png" /> when the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118013.png" /> is determinate and is described by a system of differential equations. By means of the Lyapunov stochastic function it is possible to verify a number of qualitative properties of the trajectories of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118014.png" />; their role in the theory of random processes is similar to the role of the classical [[Lyapunov function|Lyapunov function]] in the theory of systems of differential equations.
+
$$
 +
LV {( t ,x ) } =
 +
$$
  
Functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118015.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118016.png" /> is not a supermartingale, but from which one can readily form a supermartingale, are sometimes also called Lyapunov stochastic functions. Below typical results are presented on the qualitative behaviour of trajectories of Markov processes in terms of a Lyapunov stochastic function.
+
$$
 +
= \
 +
\lim\limits _ {h \rightarrow 0
 +
\frac{1}{h}
 +
{\mathsf E} [ V ( t+ h ,\
 +
X ( t+ h)) - V ( t, X ( t)) \mid  X ( t) = x ]
 +
$$
  
1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118017.png" /> is a right-continuous strong Markov process in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118018.png" />, defined up to the instant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118019.png" /> of first leaving an arbitrary compact set, and if there is a Lyapunov stochastic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118022.png" />, and a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118023.png" /> such that
+
is non-positive. The operator  $  L $
 +
is the [[Infinitesimal operator|infinitesimal operator]] of the process $  ( t , X ( t)) $,  
 +
and so the verification of the condition  $  LV \leq  0 $
 +
is easily carried out in specific cases. The operator  $  L $
 +
goes into the usual Lyapunov operator  $  dV ( t , X ( t)) / dt $
 +
when the process  $  X $
 +
is determinate and is described by a system of differential equations. By means of the Lyapunov stochastic function it is possible to verify a number of qualitative properties of the trajectories of  $  X ( t) $;
 +
their role in the theory of random processes is similar to the role of the classical [[Lyapunov function|Lyapunov function]] in the theory of systems of differential equations.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118024.png" /></td> </tr></table>
+
Functions  $  V ( t , x ) $
 +
for which  $  ( V ( t , X ( t)) , F _ {t} ) $
 +
is not a supermartingale, but from which one can readily form a supermartingale, are sometimes also called Lyapunov stochastic functions. Below typical results are presented on the qualitative behaviour of trajectories of Markov processes in terms of a Lyapunov stochastic function.
 +
 
 +
1) If  $  X ( t) $
 +
is a right-continuous strong Markov process in  $  \mathbf R  ^ {k} $,
 +
defined up to the instant  $  \tau $
 +
of first leaving an arbitrary compact set, and if there is a Lyapunov stochastic function  $  V ( t , x ) $,
 +
$  t > 0 $,
 +
$  x \in \mathbf R  ^ {k} $,
 +
and a constant  $  c $
 +
such that
 +
 
 +
$$
 +
\inf _ {t , | x| > R }  V ( t , x )  \rightarrow  \infty \ \
 +
\textrm{ as }  R \rightarrow \infty ,\ \
 +
L V  \leq  c V ,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118025.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} \{ \tau < \infty \mid  X ( 0) = x \}  = 1
 +
$$
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118026.png" />; that is, the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118027.png" /> is defined for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118028.png" /> (is indefinitely extendable).
+
for any $  x \in \mathbf R  ^ {k} $;  
 +
that is, the process $  X $
 +
is defined for all $  t > 0 $(
 +
is indefinitely extendable).
  
2) For the stationary Markov process in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118029.png" /> corresponding to a [[Transition function|transition function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118030.png" /> to exist it is sufficient that there should be a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118031.png" /> for which
+
2) For the stationary Markov process in $  \mathbf R  ^ {k} $
 +
corresponding to a [[Transition function|transition function]] $  P ( t , x , A ) $
 +
to exist it is sufficient that there should be a function $  V ( x) \geq  0 $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118032.png" /></td> </tr></table>
+
$$
 +
\sup _ {| x| > R }  L V ( x)  \rightarrow  - \infty
 +
$$
  
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061180/l06118033.png" />.
+
as $  R \rightarrow \infty $.
  
 
By means of the Lyapunov stochastic function one can carry over to Markov processes the main theorems of the direct Lyapunov method; these functions have also found application in the investigation of processes in discrete time.
 
By means of the Lyapunov stochastic function one can carry over to Markov processes the main theorems of the direct Lyapunov method; these functions have also found application in the investigation of processes in discrete time.
Line 29: Line 84:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.J. Kushner,  "Stochastic stability and control" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.Z. [R.Z. Khas'minskii] Has'minskii,  "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Kalashnikov,  "Qualitative analysis of the behaviour of complex systems by the method of test functions" , Moscow  (1978)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.J. Kushner,  "Stochastic stability and control" , Acad. Press  (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.Z. [R.Z. Khas'minskii] Has'minskii,  "Stochastic stability of differential equations" , Sijthoff &amp; Noordhoff  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Kalashnikov,  "Qualitative analysis of the behaviour of complex systems by the method of test functions" , Moscow  (1978)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 04:11, 6 June 2020


A non-negative function $ V ( t , x ) $ for which the pair $ ( V ( t , X ( t) ) , F _ {t} ) $ is a supermartingale for some random process $ X $ up to the instant $ t $( cf. also Martingale). If $ X ( t) $ is a Markov process, then the Lyapunov stochastic function is a function for which the Lyapunov stochastic operator

$$ LV {( t ,x ) } = $$

$$ = \ \lim\limits _ {h \rightarrow 0 } \frac{1}{h} {\mathsf E} [ V ( t+ h ,\ X ( t+ h)) - V ( t, X ( t)) \mid X ( t) = x ] $$

is non-positive. The operator $ L $ is the infinitesimal operator of the process $ ( t , X ( t)) $, and so the verification of the condition $ LV \leq 0 $ is easily carried out in specific cases. The operator $ L $ goes into the usual Lyapunov operator $ dV ( t , X ( t)) / dt $ when the process $ X $ is determinate and is described by a system of differential equations. By means of the Lyapunov stochastic function it is possible to verify a number of qualitative properties of the trajectories of $ X ( t) $; their role in the theory of random processes is similar to the role of the classical Lyapunov function in the theory of systems of differential equations.

Functions $ V ( t , x ) $ for which $ ( V ( t , X ( t)) , F _ {t} ) $ is not a supermartingale, but from which one can readily form a supermartingale, are sometimes also called Lyapunov stochastic functions. Below typical results are presented on the qualitative behaviour of trajectories of Markov processes in terms of a Lyapunov stochastic function.

1) If $ X ( t) $ is a right-continuous strong Markov process in $ \mathbf R ^ {k} $, defined up to the instant $ \tau $ of first leaving an arbitrary compact set, and if there is a Lyapunov stochastic function $ V ( t , x ) $, $ t > 0 $, $ x \in \mathbf R ^ {k} $, and a constant $ c $ such that

$$ \inf _ {t , | x| > R } V ( t , x ) \rightarrow \infty \ \ \textrm{ as } R \rightarrow \infty ,\ \ L V \leq c V , $$

then

$$ {\mathsf P} \{ \tau < \infty \mid X ( 0) = x \} = 1 $$

for any $ x \in \mathbf R ^ {k} $; that is, the process $ X $ is defined for all $ t > 0 $( is indefinitely extendable).

2) For the stationary Markov process in $ \mathbf R ^ {k} $ corresponding to a transition function $ P ( t , x , A ) $ to exist it is sufficient that there should be a function $ V ( x) \geq 0 $ for which

$$ \sup _ {| x| > R } L V ( x) \rightarrow - \infty $$

as $ R \rightarrow \infty $.

By means of the Lyapunov stochastic function one can carry over to Markov processes the main theorems of the direct Lyapunov method; these functions have also found application in the investigation of processes in discrete time.

References

[1] H.J. Kushner, "Stochastic stability and control" , Acad. Press (1967)
[2] R.Z. [R.Z. Khas'minskii] Has'minskii, "Stochastic stability of differential equations" , Sijthoff & Noordhoff (1980) (Translated from Russian)
[3] V.V. Kalashnikov, "Qualitative analysis of the behaviour of complex systems by the method of test functions" , Moscow (1978) (In Russian)

Comments

The phrase stochastic Lyapunov function is more common than "Lyapunov stochastic function" .

Recently, stochastic Lyapunov functions have been used to prove convergence of recursive algorithms driven by stochastic processes. Convergence problems of this type arise in system identification and adaptive control.

References

[a1] G.C. Goodwin, P.J. Ramagadge, P.E. Caines, "Discrete time stochastic adaptive control" SIAM J. Control Optim. , 19 (1981) pp. 829–853
[a2] M. Metivier, P. Priouret, "Applications of a Kushner and Clark lemma to general classes of stochastic algorithms" IEEE Trans. Inform. Theory , 30 (1984) pp. 140–151
[a3] V. Solo, "The convergence of AML" IEEE Trans. Autom. Control , 24 (1979) pp. 958–962
[a4] J.H. van Schuppen, "Convergence results for continuous-time stochastic filtering algorithms" J. Math. Anal. Appl. , 96 (1983) pp. 209–225
How to Cite This Entry:
Lyapunov stochastic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lyapunov_stochastic_function&oldid=15796
This article was adapted from an original article by R.Z. Khas'minskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article