|
|
(4 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | '' "null-propertynull-property" , of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610502.png" />, continuous on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610503.png" />''
| + | <!-- |
| + | l0610502.png |
| + | $#A+1 = 88 n = 0 |
| + | $#C+1 = 88 : ~/encyclopedia/old_files/data/L061/L.0601050 Luzin \BMI N\EMI\AAhproperty, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | For any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610504.png" /> of measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610505.png" />, the image of this set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610506.png" />, also has measure zero. It was introduced by N.N. Luzin in 1915 (see [[#References|[1]]]). The following assertions hold.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | 1) A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610507.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610508.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l0610509.png" /> almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105010.png" /> does not have the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105011.png" />-property.
| + | '' "null-propertynull-property" , of a function $ f $, |
| + | continuous on an interval $ [ a , b ] $'' |
| | | |
− | 2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105012.png" /> does not have the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105013.png" />-property, then on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105014.png" /> there is a [[Perfect set|perfect set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105015.png" /> of measure zero such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105016.png" />.
| + | For any set $ E \subset [ a , b ] $ |
| + | of measure $ \mathop{\rm mes} E = 0 $, |
| + | the image of this set, $ f ( E) $, |
| + | also has measure zero. It was introduced by N.N. Luzin in 1915 (see [[#References|[1]]]). The following assertions hold. |
| | | |
− | 3) An absolutely continuous function has the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105017.png" />-property.
| + | 1) A function $ f \not\equiv \textrm{ const } $ |
| + | on $ [ a , b ] $ |
| + | such that $ f ^ { \prime } ( x) = 0 $ |
| + | almost-everywhere on $ [ a , b ] $ |
| + | does not have the Luzin $ N $- |
| + | property |
| + | (for example [[Cantor ternary function]]). |
| | | |
− | 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105018.png" /> has the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105019.png" />-property and has bounded variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105020.png" /> (as well as being continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105021.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105022.png" /> is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105023.png" /> (the Banach–Zaretskii theorem).
| + | 2) If $ f $ |
| + | does not have the Luzin $ N $- |
| + | property, then on $ [ a , b ] $ |
| + | there is a [[Perfect set|perfect set]] $ P $ |
| + | of measure zero such that $ \mathop{\rm mes} f ( P) > 0 $. |
| | | |
− | 5) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105024.png" /> does not decrease on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105026.png" /> is finite on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105028.png" /> has the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105029.png" />-property.
| + | 3) An absolutely continuous function has the Luzin $ N $- |
| + | property. |
| | | |
− | 6) In order that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105030.png" /> be measurable for every measurable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105031.png" /> it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105032.png" /> have the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105033.png" />-property on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105034.png" />.
| + | 4) If $ f $ |
| + | has the Luzin $ N $- |
| + | property and has bounded variation on $ [ a , b ] $( |
| + | as well as being continuous on $ [ a , b ] $), |
| + | then $ f $ |
| + | is absolutely continuous on $ [ a , b ] $( |
| + | the Banach–Zaretskii theorem). |
| | | |
− | 7) A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105035.png" /> that has the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105036.png" />-property has a derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105037.png" /> on the set for which any non-empty [[Portion|portion]] of it has positive measure.
| + | 5) If $ f $ |
| + | does not decrease on $ [ a , b ] $ |
| + | and $ f ^ { \prime } $ |
| + | is finite on $ [ a , b ] $, |
| + | then $ f $ |
| + | has the Luzin $ N $- |
| + | property. |
| | | |
− | 8) For any perfect nowhere-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105038.png" /> there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105039.png" /> having the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105040.png" />-property on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105041.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105042.png" /> does not exist at any point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105043.png" />.
| + | 6) In order that $ f ( E) $ |
| + | be measurable for every measurable set $ E \subset [ a , b ] $ |
| + | it is necessary and sufficient that $ f $ |
| + | have the Luzin $ N $- |
| + | property on $ [ a , b ] $. |
| | | |
− | The concept of Luzin's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105044.png" />-property can be generalized to functions of several variables and functions of a more general nature, defined on measure spaces.
| + | 7) A function $ f $ |
| + | that has the Luzin $ N $- |
| + | property has a derivative $ f ^ { \prime } $ |
| + | on the set for which any non-empty [[Portion|portion]] of it has positive measure. |
| | | |
− | ====References====
| + | 8) For any perfect nowhere-dense set $ P \subset [ a , b ] $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212)</TD></TR></table>
| + | there is a function $ f $ |
| + | having the Luzin $ N $- |
| + | property on $ [ a , b ] $ |
| + | and such that $ f ^ { \prime } $ |
| + | does not exist at any point of $ P $. |
| | | |
| + | The concept of Luzin's $ N $- |
| + | property can be generalized to functions of several variables and functions of a more general nature, defined on measure spaces. |
| | | |
| + | ====References==== |
| + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212) {{MR|}} {{ZBL|}} </TD></TR></table> |
| | | |
| ====Comments==== | | ====Comments==== |
− | There is another property intimately related to the Luzin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105045.png" />-property. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105046.png" /> continuous on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105047.png" /> has the Banach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105049.png" />-property if for all Lebesgue-measurable sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105050.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105051.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105052.png" /> such that | + | There is another property intimately related to the Luzin $ N $- |
| + | property. A function $ f $ |
| + | continuous on an interval $ [ a , b ] $ |
| + | has the Banach $ S $- |
| + | property if for all $ E \subset [ a, b ] $ |
| + | there exists a $ \epsilon > 0 $ |
| + | such that for all Lebesgue-measurable sets $ \delta > 0 $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105053.png" /></td> </tr></table> | + | $$ |
| + | \mathop{\rm mes} ( E) < \delta \Rightarrow \mathop{\rm mes} ( f ( E) ) < \epsilon . |
| + | $$ |
| | | |
− | This is clearly stronger than the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105054.png" />-property. S. Banach proved that a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105055.png" /> has the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105056.png" />-property (respectively, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105057.png" />-property) if and only if (respectively, only if — see below for the missing "if" ) the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105058.png" /> is finite (respectively, is at most countable) for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105059.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105060.png" />. For classical results on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105061.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105062.png" />-properties, see [[#References|[a3]]]. | + | This is clearly stronger than the $ N $- |
| + | property. S. Banach proved that a function $ f $ |
| + | has the $ S $- |
| + | property (respectively, the $ N $- |
| + | property) if and only if (respectively, only if — see below for the missing "if" ) the inverse image $ f ^ { - 1 } ( \{ x \} ) $ |
| + | is finite (respectively, is at most countable) for almost-all $ x $ |
| + | in $ f ( [ a , b ] ) $. |
| + | For classical results on the $ N $- |
| + | and $ S $- |
| + | properties, see [[#References|[a3]]]. |
| | | |
− | Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [[#References|[a1]]], [[#References|[a2]]]), allowing one to prove deep results in potential theory. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105064.png" /> be two compact metrizable spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105065.png" /> being equipped with a probability measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105066.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105067.png" /> be a Borel subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105068.png" /> and, for any Borel subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105069.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105070.png" />, define the subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105071.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105072.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105073.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105074.png" /> is the graph of a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105075.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105076.png" />). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105077.png" /> is said to have the property (N) (respectively, the property (S)) if there exists a measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105078.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105079.png" /> (here depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105080.png" />) such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105081.png" />, | + | Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [[#References|[a1]]], [[#References|[a2]]]), allowing one to prove deep results in potential theory. Let $ \Omega $ |
| + | and $ T $ |
| + | be two compact metrizable spaces, $ \Omega $ |
| + | being equipped with a probability measure $ P $. |
| + | Let $ F $ |
| + | be a Borel subset of $ \Omega \times T $ |
| + | and, for any Borel subset $ E $ |
| + | of $ \Omega $, |
| + | define the subset $ F ( E) $ |
| + | of $ T $ |
| + | by $ F ( E) = \{ {t \in T } : {\textrm{ there is an } \omega \in \Omega \textrm{ such that } ( \omega , t ) \in F } \} $( |
| + | if $ F $ |
| + | is the graph of a mapping $ f: \Omega \rightarrow T $, |
| + | then $ F ( E) = f ( E) $). |
| + | The set $ F $ |
| + | is said to have the property (N) (respectively, the property (S)) if there exists a measure $ \lambda $ |
| + | on $ T $( |
| + | here depending on $ F $) |
| + | such that for all $ E \in {\mathcal B} ( \Omega ) $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105082.png" /></td> </tr></table>
| + | $$ |
| + | P ( E) = 0 \Rightarrow \lambda ( F ( E) ) = 0 |
| + | $$ |
| | | |
− | (respectively, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105083.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105084.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105085.png" /> one has | + | (respectively, for all $ \epsilon > 0 $ |
| + | there is a $ \delta > 0 $ |
| + | such that for all $ E \in {\mathcal B} ( \Omega ) $ |
| + | one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105086.png" /></td> </tr></table> | + | $$ |
| + | P ( E) < \delta \Rightarrow \lambda ( F ( E) ) < \epsilon \textrm{ ) } . |
| + | $$ |
| | | |
− | Now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105087.png" /> has the property (N) (respectively, the property (S)) if and only if the section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105088.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105089.png" /> is at most countable (respectively, is finite) for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105090.png" />. | + | Now $ F $ |
| + | has the property (N) (respectively, the property (S)) if and only if the section $ F ( \omega ) $ |
| + | of $ F $ |
| + | is at most countable (respectively, is finite) for almost-all $ \omega \in \Omega $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , ''Sem. Probab. Strasbourg XVI'' , ''Lect. notes in math.'' , '''920''' , Springer (1982) pp. 8–28</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , ''Sem. Initiation à l'Analyse'' , '''66''' , Univ. P. et M. Curie (1983–1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , ''Sem. Probab. Strasbourg XVI'' , ''Lect. notes in math.'' , '''920''' , Springer (1982) pp. 8–28 {{MR|0658670}} {{ZBL|0496.60076}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , ''Sem. Initiation à l'Analyse'' , '''66''' , Univ. P. et M. Curie (1983–1984) {{MR|}} {{ZBL|0587.28003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> |
"null-propertynull-property" , of a function $ f $,
continuous on an interval $ [ a , b ] $
For any set $ E \subset [ a , b ] $
of measure $ \mathop{\rm mes} E = 0 $,
the image of this set, $ f ( E) $,
also has measure zero. It was introduced by N.N. Luzin in 1915 (see [1]). The following assertions hold.
1) A function $ f \not\equiv \textrm{ const } $
on $ [ a , b ] $
such that $ f ^ { \prime } ( x) = 0 $
almost-everywhere on $ [ a , b ] $
does not have the Luzin $ N $-
property
(for example Cantor ternary function).
2) If $ f $
does not have the Luzin $ N $-
property, then on $ [ a , b ] $
there is a perfect set $ P $
of measure zero such that $ \mathop{\rm mes} f ( P) > 0 $.
3) An absolutely continuous function has the Luzin $ N $-
property.
4) If $ f $
has the Luzin $ N $-
property and has bounded variation on $ [ a , b ] $(
as well as being continuous on $ [ a , b ] $),
then $ f $
is absolutely continuous on $ [ a , b ] $(
the Banach–Zaretskii theorem).
5) If $ f $
does not decrease on $ [ a , b ] $
and $ f ^ { \prime } $
is finite on $ [ a , b ] $,
then $ f $
has the Luzin $ N $-
property.
6) In order that $ f ( E) $
be measurable for every measurable set $ E \subset [ a , b ] $
it is necessary and sufficient that $ f $
have the Luzin $ N $-
property on $ [ a , b ] $.
7) A function $ f $
that has the Luzin $ N $-
property has a derivative $ f ^ { \prime } $
on the set for which any non-empty portion of it has positive measure.
8) For any perfect nowhere-dense set $ P \subset [ a , b ] $
there is a function $ f $
having the Luzin $ N $-
property on $ [ a , b ] $
and such that $ f ^ { \prime } $
does not exist at any point of $ P $.
The concept of Luzin's $ N $-
property can be generalized to functions of several variables and functions of a more general nature, defined on measure spaces.
References
[1] | N.N. Luzin, "The integral and trigonometric series" , Moscow-Leningrad (1915) (In Russian) (Thesis; also: Collected Works, Vol. 1, Moscow, 1953, pp. 48–212) |
There is another property intimately related to the Luzin $ N $-
property. A function $ f $
continuous on an interval $ [ a , b ] $
has the Banach $ S $-
property if for all $ E \subset [ a, b ] $
there exists a $ \epsilon > 0 $
such that for all Lebesgue-measurable sets $ \delta > 0 $,
$$
\mathop{\rm mes} ( E) < \delta \Rightarrow \mathop{\rm mes} ( f ( E) ) < \epsilon .
$$
This is clearly stronger than the $ N $-
property. S. Banach proved that a function $ f $
has the $ S $-
property (respectively, the $ N $-
property) if and only if (respectively, only if — see below for the missing "if" ) the inverse image $ f ^ { - 1 } ( \{ x \} ) $
is finite (respectively, is at most countable) for almost-all $ x $
in $ f ( [ a , b ] ) $.
For classical results on the $ N $-
and $ S $-
properties, see [a3].
Recently a powerful extension of these results has been given by G. Mokobodzki (cf. [a1], [a2]), allowing one to prove deep results in potential theory. Let $ \Omega $
and $ T $
be two compact metrizable spaces, $ \Omega $
being equipped with a probability measure $ P $.
Let $ F $
be a Borel subset of $ \Omega \times T $
and, for any Borel subset $ E $
of $ \Omega $,
define the subset $ F ( E) $
of $ T $
by $ F ( E) = \{ {t \in T } : {\textrm{ there is an } \omega \in \Omega \textrm{ such that } ( \omega , t ) \in F } \} $(
if $ F $
is the graph of a mapping $ f: \Omega \rightarrow T $,
then $ F ( E) = f ( E) $).
The set $ F $
is said to have the property (N) (respectively, the property (S)) if there exists a measure $ \lambda $
on $ T $(
here depending on $ F $)
such that for all $ E \in {\mathcal B} ( \Omega ) $,
$$
P ( E) = 0 \Rightarrow \lambda ( F ( E) ) = 0
$$
(respectively, for all $ \epsilon > 0 $
there is a $ \delta > 0 $
such that for all $ E \in {\mathcal B} ( \Omega ) $
one has
$$
P ( E) < \delta \Rightarrow \lambda ( F ( E) ) < \epsilon \textrm{ ) } .
$$
Now $ F $
has the property (N) (respectively, the property (S)) if and only if the section $ F ( \omega ) $
of $ F $
is at most countable (respectively, is finite) for almost-all $ \omega \in \Omega $.
References
[a1] | C. Dellacherie, D. Feyel, G. Mokobodzki, "Intégrales de capacités fortement sous-additives" , Sem. Probab. Strasbourg XVI , Lect. notes in math. , 920 , Springer (1982) pp. 8–28 MR0658670 Zbl 0496.60076 |
[a2] | A. Louveau, "Minceur et continuité séquentielle des sous-mesures analytiques fortement sous-additives" , Sem. Initiation à l'Analyse , 66 , Univ. P. et M. Curie (1983–1984) Zbl 0587.28003 |
[a3] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
[a4] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |