Difference between revisions of "Loxodrome"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A curve on a [[Surface of revolution|surface of revolution]] that cuts all the meridians at a constant angle | + | <!-- |
+ | l0609701.png | ||
+ | $#A+1 = 6 n = 0 | ||
+ | $#C+1 = 6 : ~/encyclopedia/old_files/data/L060/L.0600970 Loxodrome | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A curve on a [[Surface of revolution|surface of revolution]] that cuts all the meridians at a constant angle $ \alpha $. | ||
+ | If $ \alpha $ | ||
+ | is an acute or obtuse angle, then a loxodrome performs infinitely many windings about the pole, getting closer and closer to it. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/l060970a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/l060970a.gif" /> | ||
Line 7: | Line 21: | ||
For surfaces of revolution whose [[First fundamental form|first fundamental form]] can be written as | For surfaces of revolution whose [[First fundamental form|first fundamental form]] can be written as | ||
− | + | $$ | |
+ | ds ^ {2} = du ^ {2} + G ( u) d v ^ {2} , | ||
+ | $$ | ||
the equation of a loxodrome is | the equation of a loxodrome is | ||
− | + | $$ | |
+ | v \mathop{\rm cotan} \alpha = \pm \int\limits _ { u _ 0 } ^ { u } | ||
+ | \frac{du }{ | ||
+ | \sqrt {G ( u) } } | ||
+ | . | ||
+ | $$ | ||
For a sphere with first fundamental form | For a sphere with first fundamental form | ||
− | + | $$ | |
+ | d s ^ {2} = R ^ {2} ( d u ^ {2} + \cos ^ {2} u d v ^ {2} ) | ||
+ | $$ | ||
the equation of a loxodrome is | the equation of a loxodrome is | ||
− | + | $$ | |
− | + | v \mathop{\rm cotan} \alpha = R \mathop{\rm ln} \mathop{\rm tan} \left ( | |
+ | \frac \pi {4} | ||
+ | + | ||
+ | \frac{u}{2R} | ||
+ | \right ) . | ||
+ | $$ | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Strubecker, "Differentialgeometrie" , '''2. Theorie der Flächenmetrik''' , de Gruyter (1958)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Strubecker, "Differentialgeometrie" , '''2. Theorie der Flächenmetrik''' , de Gruyter (1958)</TD></TR></table> |
Revision as of 04:11, 6 June 2020
A curve on a surface of revolution that cuts all the meridians at a constant angle $ \alpha $.
If $ \alpha $
is an acute or obtuse angle, then a loxodrome performs infinitely many windings about the pole, getting closer and closer to it.
Figure: l060970a
For surfaces of revolution whose first fundamental form can be written as
$$ ds ^ {2} = du ^ {2} + G ( u) d v ^ {2} , $$
the equation of a loxodrome is
$$ v \mathop{\rm cotan} \alpha = \pm \int\limits _ { u _ 0 } ^ { u } \frac{du }{ \sqrt {G ( u) } } . $$
For a sphere with first fundamental form
$$ d s ^ {2} = R ^ {2} ( d u ^ {2} + \cos ^ {2} u d v ^ {2} ) $$
the equation of a loxodrome is
$$ v \mathop{\rm cotan} \alpha = R \mathop{\rm ln} \mathop{\rm tan} \left ( \frac \pi {4} + \frac{u}{2R} \right ) . $$
Comments
References
[a1] | K. Strubecker, "Differentialgeometrie" , 2. Theorie der Flächenmetrik , de Gruyter (1958) |
Loxodrome. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Loxodrome&oldid=18141