Difference between revisions of "Lommel polynomial"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0608101.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/L060/L.0600810 Lommel polynomial | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The polynomial $ R _ {m, \nu } ( z) $ | |
+ | of degree $ m $ | ||
+ | in $ z ^ {-} 1 $ | ||
+ | which for $ m = 0 , 1 ,\dots $ | ||
+ | and any $ \nu $ | ||
+ | is defined by | ||
+ | |||
+ | $$ | ||
+ | R _ {m , \nu } ( z) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | |||
+ | \frac{\pi z }{2 \sin \nu \pi } | ||
+ | [ J _ {\nu + m } ( z) J _ { | ||
+ | - \nu + 1 } ( z) + (- 1) ^ {m} J _ {- \nu - m } ( z) J _ {\nu - 1 } ( z)] | ||
+ | $$ | ||
or | or | ||
− | + | $$ | |
+ | R _ {m , \nu } ( z) = | ||
+ | \frac{\Gamma ( \nu + m ) }{\Gamma ( \nu ) } | ||
+ | |||
+ | \left ( | ||
+ | \frac{2}{z} | ||
+ | \right ) ^ {m} \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | {} _ {2} F _ {3} \left ( 1- | ||
+ | \frac{m}{2} | ||
+ | , - | ||
+ | \frac{m}{2} | ||
+ | ; \nu , - m , 1 | ||
+ | - \nu - m ; - z ^ {2} \right ) . | ||
+ | $$ | ||
− | Here | + | Here $ J _ \mu ( z) $ |
+ | is the Bessel function (cf. [[Bessel functions|Bessel functions]]) and $ {} _ {2} F _ {3} $ | ||
+ | is the [[Hypergeometric series|hypergeometric series]]. The Lommel polynomials satisfy the relations | ||
− | + | $$ | |
+ | J _ {\nu + m } ( z) = J _ \nu ( z) R _ {m , \nu } ( z) - J _ {\nu | ||
+ | - 1 } ( z) R _ {m- 1 , \nu + 1 } ( z) , | ||
+ | $$ | ||
− | + | $$ | |
+ | R _ {0 , \nu } ( z) = 1 ,\ m = 1 , 2 ,\dots . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Magnus, F. Oberhettinger, R.P. Soni, "Formulas and theorems for the special functions of mathematical physics" , Springer (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W. Magnus, F. Oberhettinger, R.P. Soni, "Formulas and theorems for the special functions of mathematical physics" , Springer (1966)</TD></TR></table> |
Latest revision as of 04:11, 6 June 2020
The polynomial $ R _ {m, \nu } ( z) $
of degree $ m $
in $ z ^ {-} 1 $
which for $ m = 0 , 1 ,\dots $
and any $ \nu $
is defined by
$$ R _ {m , \nu } ( z) = $$
$$ = \ \frac{\pi z }{2 \sin \nu \pi } [ J _ {\nu + m } ( z) J _ { - \nu + 1 } ( z) + (- 1) ^ {m} J _ {- \nu - m } ( z) J _ {\nu - 1 } ( z)] $$
or
$$ R _ {m , \nu } ( z) = \frac{\Gamma ( \nu + m ) }{\Gamma ( \nu ) } \left ( \frac{2}{z} \right ) ^ {m} \times $$
$$ \times {} _ {2} F _ {3} \left ( 1- \frac{m}{2} , - \frac{m}{2} ; \nu , - m , 1 - \nu - m ; - z ^ {2} \right ) . $$
Here $ J _ \mu ( z) $ is the Bessel function (cf. Bessel functions) and $ {} _ {2} F _ {3} $ is the hypergeometric series. The Lommel polynomials satisfy the relations
$$ J _ {\nu + m } ( z) = J _ \nu ( z) R _ {m , \nu } ( z) - J _ {\nu - 1 } ( z) R _ {m- 1 , \nu + 1 } ( z) , $$
$$ R _ {0 , \nu } ( z) = 1 ,\ m = 1 , 2 ,\dots . $$
References
[1] | W. Magnus, F. Oberhettinger, R.P. Soni, "Formulas and theorems for the special functions of mathematical physics" , Springer (1966) |
Lommel polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lommel_polynomial&oldid=13245