Difference between revisions of "Logarithmic function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0606001.png | ||
+ | $#A+1 = 52 n = 0 | ||
+ | $#C+1 = 52 : ~/encyclopedia/old_files/data/L060/L.0600600 Logarithmic function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''logarithm'' | ''logarithm'' | ||
The function inverse to the [[Exponential function|exponential function]]. The logarithmic function is denoted by | The function inverse to the [[Exponential function|exponential function]]. The logarithmic function is denoted by | ||
− | + | $$ \tag{1 } | |
+ | y = \mathop{\rm ln} x ; | ||
+ | $$ | ||
− | its value | + | its value $ y $, |
+ | corresponding to the value of the argument $ x $, | ||
+ | is called the natural logarithm of $ x $. | ||
+ | From the definition, relation (1) is equivalent to | ||
− | + | $$ \tag{2 } | |
+ | x = e ^ {y} . | ||
+ | $$ | ||
− | Since | + | Since $ e ^ {y} > 0 $ |
+ | for any real $ y $, | ||
+ | the logarithmic function is defined only for $ x > 0 $. | ||
+ | In a more general sense a logarithmic function is a function | ||
− | + | $$ | |
+ | y = \mathop{\rm log} _ {a} x , | ||
+ | $$ | ||
− | where | + | where $ a > 0 $( |
+ | $ a \neq 1 $) | ||
+ | is an arbitrary base of the logarithm; this function can be expressed in terms of $ \mathop{\rm ln} x $ | ||
+ | by the formula | ||
− | + | $$ | |
+ | \mathop{\rm log} _ {a} x = | ||
+ | \frac{ \mathop{\rm ln} x }{ \mathop{\rm ln} a } | ||
+ | . | ||
+ | $$ | ||
The logarithmic function is one of the main elementary functions; its graph (see Fig.) is called a logarithmic curve. | The logarithmic function is one of the main elementary functions; its graph (see Fig.) is called a logarithmic curve. | ||
Line 25: | Line 56: | ||
The main properties of the logarithmic function follow from the corresponding properties of the exponential function and logarithms; for example, the logarithmic function satisfies the functional equation | The main properties of the logarithmic function follow from the corresponding properties of the exponential function and logarithms; for example, the logarithmic function satisfies the functional equation | ||
− | + | $$ | |
+ | \mathop{\rm ln} x + \mathop{\rm ln} y = \mathop{\rm ln} x y . | ||
+ | $$ | ||
− | The logarithmic function | + | The logarithmic function $ y = \mathop{\rm ln} x $ |
+ | is a strictly-increasing function, and $ \lim\limits _ {x \downarrow 0 } \mathop{\rm ln} x = - \infty $, | ||
+ | $ \lim\limits _ {x \rightarrow \infty } \mathop{\rm ln} x = + \infty $. | ||
+ | At every point $ x > 0 $ | ||
+ | the logarithmic function has derivatives of all orders and in a sufficiently small neighbourhood it can be expanded in a power series, that is, it is an [[Analytic function|analytic function]]. For $ - 1 < x \leq 1 $ | ||
+ | the following expansion of the (natural) logarithmic function is valid: | ||
− | + | $$ | |
+ | \mathop{\rm ln} ( 1 + x ) = x - | ||
+ | |||
+ | \frac{x ^ {2}}{2} | ||
+ | + | ||
+ | |||
+ | \frac{x ^ {3}}{3} | ||
+ | - | ||
+ | |||
+ | \frac{x ^ {4}}{4} | ||
+ | + \dots . | ||
+ | $$ | ||
The derivative of the logarithmic function is | The derivative of the logarithmic function is | ||
− | + | $$ | |
+ | ( \mathop{\rm ln} x ) ^ \prime = | ||
+ | \frac{1}{x} | ||
+ | ,\ \ | ||
+ | ( \mathop{\rm log} _ {a} x ) ^ \prime = \ | ||
+ | |||
+ | \frac{ \mathop{\rm log} _ {a} e }{x} | ||
+ | = \ | ||
+ | |||
+ | \frac{1}{x \mathop{\rm ln} a } | ||
+ | . | ||
+ | $$ | ||
Many integrals can be expressed in terms of the logarithmic function; for example: | Many integrals can be expressed in terms of the logarithmic function; for example: | ||
− | + | $$ | |
+ | \int\limits | ||
+ | \frac{dx}{x} | ||
+ | = \mathop{\rm ln} | x | + C , | ||
+ | $$ | ||
− | + | $$ | |
+ | \int\limits | ||
+ | \frac{dx}{\sqrt {x ^ {2} + a } } | ||
+ | = \mathop{\rm ln} ( x + \sqrt {x ^ {2} + a } ) + C . | ||
+ | $$ | ||
The dependence between variable quantities expressed by the logarithmic function was first considered by J. Napier in 1614. | The dependence between variable quantities expressed by the logarithmic function was first considered by J. Napier in 1614. | ||
− | The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument | + | The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument $ z \neq 0 $, |
+ | and is denoted by $ \mathop{\rm Ln} z $( | ||
+ | or $ \mathop{\rm ln} z $ | ||
+ | if no confusion arises). The single-valued branch of this function defined by | ||
− | + | $$ | |
+ | \mathop{\rm ln} z = \mathop{\rm ln} | z | + i \mathop{\rm arg} z , | ||
+ | $$ | ||
− | where | + | where $ \mathop{\rm arg} z $ |
+ | is the principal value of the argument of the complex number $ z $, | ||
+ | $ \pi < \mathop{\rm arg} z \leq \pi $, | ||
+ | is called the principal value of the logarithmic function. One has | ||
− | + | $$ | |
+ | \mathop{\rm Ln} z = \mathop{\rm ln} z + 2 k \pi i ,\ \ | ||
+ | k = 0 , \pm 1 ,\dots . | ||
+ | $$ | ||
− | All values of the logarithmic function for negative real | + | All values of the logarithmic function for negative real $ z $ |
+ | are purely imaginary complex numbers. The first satisfactory theory of the logarithmic function for complex arguments was given by L. Euler in 1749; he started from the definition | ||
− | + | $$ | |
+ | \mathop{\rm Ln} z = \lim\limits _ {n \rightarrow \infty } n | ||
+ | ( z ^ {1/n} - 1 ) . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.M. Nikol'skii, "A course of mathematical analysis" , '''1''' , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.M. Nikol'skii, "A course of mathematical analysis" , '''1''' , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The principal value of the logarithm maps the punctured complex | + | The principal value of the logarithm maps the punctured complex $ z $- |
+ | plane $ ( z \neq 0) $ | ||
+ | onto the strip $ - \pi < \mathop{\rm Ln} z \leq \pi $ | ||
+ | in the complex $ w $- | ||
+ | plane. To fill the $ w $- | ||
+ | plane one has to map infinitely many copies of the $ z $- | ||
+ | plane, where for the $ n $- | ||
+ | th copy one has $ - \pi + 2 n \pi < \mathop{\rm arg} z \leq \pi + 2 n \pi $, | ||
+ | $ n = 0 , \pm 1 ,\dots $. | ||
+ | In this case $ 0 $ | ||
+ | is a [[Branch point|branch point]]. The copies make up the so-called [[Riemann surface|Riemann surface]] of the logarithmic function. Clearly, $ \mathop{\rm ln} z $ | ||
+ | is a one-to-one mapping of this surface $ ( z \neq 0 ) $ | ||
+ | onto the $ w $- | ||
+ | plane. The derivative of the principal value is $ 1 / z $( | ||
+ | as in the real case) for $ - \pi < \mathop{\rm arg} z < \pi $. | ||
− | Instead of | + | Instead of $ \mathop{\rm ln} $ |
+ | and $ \mathop{\rm Ln} $, | ||
+ | many Western writers of post-calculus mathematics use $ \mathop{\rm log} $ | ||
+ | and $ \mathop{\rm Log} $( | ||
+ | see also (the editorial comments to) [[Logarithm of a number|Logarithm of a number]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Marsden, "Basic complex analysis" , Freeman (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Saks, A. Zygmund, "Analytic functions" , PWN (1952) (Translated from Polish)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Marsden, "Basic complex analysis" , Freeman (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Saks, A. Zygmund, "Analytic functions" , PWN (1952) (Translated from Polish)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981)</TD></TR></table> |
Revision as of 22:17, 5 June 2020
logarithm
The function inverse to the exponential function. The logarithmic function is denoted by
$$ \tag{1 } y = \mathop{\rm ln} x ; $$
its value $ y $, corresponding to the value of the argument $ x $, is called the natural logarithm of $ x $. From the definition, relation (1) is equivalent to
$$ \tag{2 } x = e ^ {y} . $$
Since $ e ^ {y} > 0 $ for any real $ y $, the logarithmic function is defined only for $ x > 0 $. In a more general sense a logarithmic function is a function
$$ y = \mathop{\rm log} _ {a} x , $$
where $ a > 0 $( $ a \neq 1 $) is an arbitrary base of the logarithm; this function can be expressed in terms of $ \mathop{\rm ln} x $ by the formula
$$ \mathop{\rm log} _ {a} x = \frac{ \mathop{\rm ln} x }{ \mathop{\rm ln} a } . $$
The logarithmic function is one of the main elementary functions; its graph (see Fig.) is called a logarithmic curve.
Figure: l060600a
The main properties of the logarithmic function follow from the corresponding properties of the exponential function and logarithms; for example, the logarithmic function satisfies the functional equation
$$ \mathop{\rm ln} x + \mathop{\rm ln} y = \mathop{\rm ln} x y . $$
The logarithmic function $ y = \mathop{\rm ln} x $ is a strictly-increasing function, and $ \lim\limits _ {x \downarrow 0 } \mathop{\rm ln} x = - \infty $, $ \lim\limits _ {x \rightarrow \infty } \mathop{\rm ln} x = + \infty $. At every point $ x > 0 $ the logarithmic function has derivatives of all orders and in a sufficiently small neighbourhood it can be expanded in a power series, that is, it is an analytic function. For $ - 1 < x \leq 1 $ the following expansion of the (natural) logarithmic function is valid:
$$ \mathop{\rm ln} ( 1 + x ) = x - \frac{x ^ {2}}{2} + \frac{x ^ {3}}{3} - \frac{x ^ {4}}{4} + \dots . $$
The derivative of the logarithmic function is
$$ ( \mathop{\rm ln} x ) ^ \prime = \frac{1}{x} ,\ \ ( \mathop{\rm log} _ {a} x ) ^ \prime = \ \frac{ \mathop{\rm log} _ {a} e }{x} = \ \frac{1}{x \mathop{\rm ln} a } . $$
Many integrals can be expressed in terms of the logarithmic function; for example:
$$ \int\limits \frac{dx}{x} = \mathop{\rm ln} | x | + C , $$
$$ \int\limits \frac{dx}{\sqrt {x ^ {2} + a } } = \mathop{\rm ln} ( x + \sqrt {x ^ {2} + a } ) + C . $$
The dependence between variable quantities expressed by the logarithmic function was first considered by J. Napier in 1614.
The logarithmic function on the complex plane is an infinitely-valued function, defined for all values of the argument $ z \neq 0 $, and is denoted by $ \mathop{\rm Ln} z $( or $ \mathop{\rm ln} z $ if no confusion arises). The single-valued branch of this function defined by
$$ \mathop{\rm ln} z = \mathop{\rm ln} | z | + i \mathop{\rm arg} z , $$
where $ \mathop{\rm arg} z $ is the principal value of the argument of the complex number $ z $, $ \pi < \mathop{\rm arg} z \leq \pi $, is called the principal value of the logarithmic function. One has
$$ \mathop{\rm Ln} z = \mathop{\rm ln} z + 2 k \pi i ,\ \ k = 0 , \pm 1 ,\dots . $$
All values of the logarithmic function for negative real $ z $ are purely imaginary complex numbers. The first satisfactory theory of the logarithmic function for complex arguments was given by L. Euler in 1749; he started from the definition
$$ \mathop{\rm Ln} z = \lim\limits _ {n \rightarrow \infty } n ( z ^ {1/n} - 1 ) . $$
References
[1] | S.M. Nikol'skii, "A course of mathematical analysis" , 1 , MIR (1977) (Translated from Russian) |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian) |
Comments
The principal value of the logarithm maps the punctured complex $ z $- plane $ ( z \neq 0) $ onto the strip $ - \pi < \mathop{\rm Ln} z \leq \pi $ in the complex $ w $- plane. To fill the $ w $- plane one has to map infinitely many copies of the $ z $- plane, where for the $ n $- th copy one has $ - \pi + 2 n \pi < \mathop{\rm arg} z \leq \pi + 2 n \pi $, $ n = 0 , \pm 1 ,\dots $. In this case $ 0 $ is a branch point. The copies make up the so-called Riemann surface of the logarithmic function. Clearly, $ \mathop{\rm ln} z $ is a one-to-one mapping of this surface $ ( z \neq 0 ) $ onto the $ w $- plane. The derivative of the principal value is $ 1 / z $( as in the real case) for $ - \pi < \mathop{\rm arg} z < \pi $.
Instead of $ \mathop{\rm ln} $ and $ \mathop{\rm Ln} $, many Western writers of post-calculus mathematics use $ \mathop{\rm log} $ and $ \mathop{\rm Log} $( see also (the editorial comments to) Logarithm of a number).
References
[a1] | J.B. Conway, "Functions of one complex variable" , Springer (1973) |
[a2] | E. Marsden, "Basic complex analysis" , Freeman (1973) |
[a3] | E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1979) |
[a4] | S. Saks, A. Zygmund, "Analytic functions" , PWN (1952) (Translated from Polish) |
[a5] | K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) |
Logarithmic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logarithmic_function&oldid=16249