Namespaces
Variants
Actions

Difference between revisions of "Local approximation of functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A measure of approximation (in particular, [[Best approximation|best approximation]]) of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600801.png" /> on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600802.png" />, regarded as a function of this set. The main interest is in the behaviour of a local approximation of a function as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600803.png" />. In certain cases it is possible to characterize the degree of smoothness of the function to be approximated in terms of a local approximation of the function. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600804.png" /> be the best approximation of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600805.png" /> by algebraic polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600806.png" /> on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600807.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600808.png" />. The following assertion holds: A necessary and sufficient condition for a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l0600809.png" /> to have a continuous derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008010.png" /> at all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008011.png" /> is that
+
<!--
 +
l0600801.png
 +
$#A+1 = 17 n = 1
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/L060/L.0600080 Local approximation of functions
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008012.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
uniformly for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008015.png" />, where the continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008016.png" /> is defined by
+
A measure of approximation (in particular, [[Best approximation|best approximation]]) of a function  $  f $
 +
on a set  $  E \subset  \mathbf R  ^ {m} $,  
 +
regarded as a function of this set. The main interest is in the behaviour of a local approximation of a function as  $  \mathop{\rm mes}  E \rightarrow 0 $.  
 +
In certain cases it is possible to characterize the degree of smoothness of the function to be approximated in terms of a local approximation of the function. Let  $  E _ {n} ( f ;  ( \alpha , \beta ) ) $
 +
be the best approximation of a function $  f \in C [ a , b ] $
 +
by algebraic polynomials of degree  $  n $
 +
on an interval  $  ( \alpha , \beta ) $,
 +
$  a \leq  \alpha < \beta \leq  b $.
 +
The following assertion holds: A necessary and sufficient condition for a function  $  f $
 +
to have a continuous derivative of order  $  n + 1 $
 +
at all points of  $  [ a , b ] $
 +
is that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060080/l06008017.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{E _ {n} ( f ; ( \alpha , \beta ) ) }{( \beta - \alpha )  ^ {n+} 1 }
 +
 
 +
\rightarrow  \lambda ( x) ,\ \
 +
a \leq  x \leq  b ,
 +
$$
 +
 
 +
uniformly for  $  \beta \rightarrow x $,
 +
$  \alpha \rightarrow x $,
 +
$  \alpha < x < \beta $,
 +
where the continuous function  $  \lambda $
 +
is defined by
 +
 
 +
$$
 +
( n + 1 ) ! 2  ^ {2n+} 1 \lambda ( x)  = | f ^ { ( n + 1 ) } ( x) | .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.A. Raikov,  "On the local approximation of differentiable functions"  ''Dokl. Akad. Nauk SSSR'' , '''24''' :  7  (1939)  pp. 653–656  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.N. Bernshtein,  "Collected works" , '''2''' , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.A. Brudnyi,  "Spaces defined by means of local approximations"  ''Trans. Moscow Math. Soc.'' , '''24'''  (1974)  pp. 73–139  ''Trudy Moskov. Mat. Obshch.'' , '''24'''  (1971)  pp. 69–132</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  D.A. Raikov,  "On the local approximation of differentiable functions"  ''Dokl. Akad. Nauk SSSR'' , '''24''' :  7  (1939)  pp. 653–656  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.N. Bernshtein,  "Collected works" , '''2''' , Moscow  (1954)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.A. Brudnyi,  "Spaces defined by means of local approximations"  ''Trans. Moscow Math. Soc.'' , '''24'''  (1974)  pp. 73–139  ''Trudy Moskov. Mat. Obshch.'' , '''24'''  (1971)  pp. 69–132</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:17, 5 June 2020


A measure of approximation (in particular, best approximation) of a function $ f $ on a set $ E \subset \mathbf R ^ {m} $, regarded as a function of this set. The main interest is in the behaviour of a local approximation of a function as $ \mathop{\rm mes} E \rightarrow 0 $. In certain cases it is possible to characterize the degree of smoothness of the function to be approximated in terms of a local approximation of the function. Let $ E _ {n} ( f ; ( \alpha , \beta ) ) $ be the best approximation of a function $ f \in C [ a , b ] $ by algebraic polynomials of degree $ n $ on an interval $ ( \alpha , \beta ) $, $ a \leq \alpha < \beta \leq b $. The following assertion holds: A necessary and sufficient condition for a function $ f $ to have a continuous derivative of order $ n + 1 $ at all points of $ [ a , b ] $ is that

$$ \frac{E _ {n} ( f ; ( \alpha , \beta ) ) }{( \beta - \alpha ) ^ {n+} 1 } \rightarrow \lambda ( x) ,\ \ a \leq x \leq b , $$

uniformly for $ \beta \rightarrow x $, $ \alpha \rightarrow x $, $ \alpha < x < \beta $, where the continuous function $ \lambda $ is defined by

$$ ( n + 1 ) ! 2 ^ {2n+} 1 \lambda ( x) = | f ^ { ( n + 1 ) } ( x) | . $$

References

[1] D.A. Raikov, "On the local approximation of differentiable functions" Dokl. Akad. Nauk SSSR , 24 : 7 (1939) pp. 653–656 (In Russian)
[2] S.N. Bernshtein, "Collected works" , 2 , Moscow (1954) (In Russian)
[3] Yu.A. Brudnyi, "Spaces defined by means of local approximations" Trans. Moscow Math. Soc. , 24 (1974) pp. 73–139 Trudy Moskov. Mat. Obshch. , 24 (1971) pp. 69–132

Comments

According to [3], which is a valuable survey paper with a rather extensive bibliography, the first result characterizing a space of smooth functions in terms of local approximations was obtained by D.A. Raikov [1].

References

[a1] J. Peetre, "On the theory of spaces" J. Funct. Anal. , 4 (1969) pp. 71–87
How to Cite This Entry:
Local approximation of functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_approximation_of_functions&oldid=16658
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article