|
|
Line 1: |
Line 1: |
− | A statistical hypothesis according to which the mean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592801.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592802.png" />-dimensional normal law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592803.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592804.png" /> is the unit matrix), lying in a linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592805.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592806.png" />, belongs to a linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592807.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592808.png" />.
| + | <!-- |
| + | l0592801.png |
| + | $#A+1 = 36 n = 0 |
| + | $#C+1 = 36 : ~/encyclopedia/old_files/data/L059/L.0509280 Linear hypothesis |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Many problems of mathematical statistics can be reduced to the problem of testing a linear hypothesis, which is often stated in the following so-called canonical form. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l0592809.png" /> be a normally distributed vector with independent components and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928010.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928012.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928014.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928015.png" />, where the quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928016.png" /> are unknown. Then the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928017.png" />, according to which
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928018.png" /></td> </tr></table> | + | A statistical hypothesis according to which the mean $ a $ |
| + | of an $ n $- |
| + | dimensional normal law $ N _ {n} ( a , \sigma ^ {2} I ) $( |
| + | where $ I $ |
| + | is the unit matrix), lying in a linear subspace $ \Pi ^ {s} \subset \mathbf R ^ {n} $ |
| + | of dimension $ s < n $, |
| + | belongs to a linear subspace $ \Pi ^ {r} \subset \Pi ^ {s} $ |
| + | of dimension $ r < s $. |
| + | |
| + | Many problems of mathematical statistics can be reduced to the problem of testing a linear hypothesis, which is often stated in the following so-called canonical form. Let $ X = ( X _ {1} \dots X _ {n} ) $ |
| + | be a normally distributed vector with independent components and let $ {\mathsf E} X _ {i} = a _ {i} $ |
| + | for $ i = 1 \dots s $, |
| + | $ {\mathsf E} X _ {i} = 0 $ |
| + | for $ i = s + 1 \dots n $ |
| + | and $ {\mathsf D} X _ {i} = \sigma ^ {2} $ |
| + | for $ i = 1 \dots n $, |
| + | where the quantities $ a _ {1} \dots a _ {s} $ |
| + | are unknown. Then the hypothesis $ H _ {0} $, |
| + | according to which |
| + | |
| + | $$ |
| + | a _ {1} = \dots = a _ {r} = 0 ,\ \ |
| + | r < s < n , |
| + | $$ |
| | | |
| is the canonical linear hypothesis. | | is the canonical linear hypothesis. |
| | | |
− | Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928020.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928021.png" /> independent random variables, subject to normal distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928023.png" />, respectively, where the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928026.png" /> are unknown. Then the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928027.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928028.png" /> is the linear hypothesis, while a hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928030.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928031.png" /> is not linear. | + | Example. Let $ Y _ {1} \dots Y _ {n} $ |
| + | and $ Z _ {1} \dots Z _ {m} $ |
| + | be $ n + m $ |
| + | independent random variables, subject to normal distributions $ N _ {1} ( a , \sigma ^ {2} ) $ |
| + | and $ N _ {1} ( b , \sigma ^ {2} ) $, |
| + | respectively, where the parameters $ a $, |
| + | $ b $, |
| + | $ \sigma ^ {2} $ |
| + | are unknown. Then the hypothesis $ H _ {0} $: |
| + | $ a = b = 0 $ |
| + | is the linear hypothesis, while a hypothesis $ a = a _ {0} $, |
| + | $ b = b _ {0} $ |
| + | with $ a _ {0} \neq b _ {0} $ |
| + | is not linear. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | However, such a linear hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928033.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928034.png" /> does correspond to a linear hypothesis concerning the means of the transformed quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059280/l05928036.png" />. | + | However, such a linear hypothesis $ a = a _ {0} $, |
| + | $ b = b _ {0} $ |
| + | with $ a _ {0} \neq b _ {0} $ |
| + | does correspond to a linear hypothesis concerning the means of the transformed quantities $ Y _ {i} ^ \prime = Y _ {i} - a _ {0} $, |
| + | $ Z _ {i} ^ \prime = Z _ {i} - b _ {0} $. |
Latest revision as of 22:17, 5 June 2020
A statistical hypothesis according to which the mean $ a $
of an $ n $-
dimensional normal law $ N _ {n} ( a , \sigma ^ {2} I ) $(
where $ I $
is the unit matrix), lying in a linear subspace $ \Pi ^ {s} \subset \mathbf R ^ {n} $
of dimension $ s < n $,
belongs to a linear subspace $ \Pi ^ {r} \subset \Pi ^ {s} $
of dimension $ r < s $.
Many problems of mathematical statistics can be reduced to the problem of testing a linear hypothesis, which is often stated in the following so-called canonical form. Let $ X = ( X _ {1} \dots X _ {n} ) $
be a normally distributed vector with independent components and let $ {\mathsf E} X _ {i} = a _ {i} $
for $ i = 1 \dots s $,
$ {\mathsf E} X _ {i} = 0 $
for $ i = s + 1 \dots n $
and $ {\mathsf D} X _ {i} = \sigma ^ {2} $
for $ i = 1 \dots n $,
where the quantities $ a _ {1} \dots a _ {s} $
are unknown. Then the hypothesis $ H _ {0} $,
according to which
$$
a _ {1} = \dots = a _ {r} = 0 ,\ \
r < s < n ,
$$
is the canonical linear hypothesis.
Example. Let $ Y _ {1} \dots Y _ {n} $
and $ Z _ {1} \dots Z _ {m} $
be $ n + m $
independent random variables, subject to normal distributions $ N _ {1} ( a , \sigma ^ {2} ) $
and $ N _ {1} ( b , \sigma ^ {2} ) $,
respectively, where the parameters $ a $,
$ b $,
$ \sigma ^ {2} $
are unknown. Then the hypothesis $ H _ {0} $:
$ a = b = 0 $
is the linear hypothesis, while a hypothesis $ a = a _ {0} $,
$ b = b _ {0} $
with $ a _ {0} \neq b _ {0} $
is not linear.
References
[1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
However, such a linear hypothesis $ a = a _ {0} $,
$ b = b _ {0} $
with $ a _ {0} \neq b _ {0} $
does correspond to a linear hypothesis concerning the means of the transformed quantities $ Y _ {i} ^ \prime = Y _ {i} - a _ {0} $,
$ Z _ {i} ^ \prime = Z _ {i} - b _ {0} $.
How to Cite This Entry:
Linear hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_hypothesis&oldid=12624
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article