Namespaces
Variants
Actions

Difference between revisions of "Lindeberg-Feller theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
Line 1: Line 1:
A theorem that establishes necessary and sufficient conditions for the asymptotic normality of the distribution function of sums of independent random variables that have finite variances. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589401.png" /> be a sequence of independent random variables with means <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589402.png" /> and finite variances <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589403.png" /> not all of which are zero. Let
+
<!--
 +
l0589401.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/L058/L.0508940 Lindeberg\ANDFeller theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589404.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A theorem that establishes necessary and sufficient conditions for the asymptotic normality of the distribution function of sums of independent random variables that have finite variances. Let  $  X _ {1} , X _ {2} \dots $
 +
be a sequence of independent random variables with means  $  a _ {1} , a _ {2} \dots $
 +
and finite variances  $  \sigma _ {1}  ^ {2} , \sigma _ {2}  ^ {2} \dots $
 +
not all of which are zero. Let
 +
 
 +
$$
 +
B _ {n}  ^ {2}  = \sum _ { j= } 1 ^ { n }  \sigma _ {j}  ^ {2} ,\ \
 +
V _ {j} ( x)  = {\mathsf P} \{ x _ {j} < x \} .
 +
$$
  
 
In order that
 
In order that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589405.png" /></td> </tr></table>
+
$$
 +
B _ {n}  ^ {-} 2  \max _ {1 \leq  j \leq  n } \
 +
\sigma _ {j}  ^ {2}  \rightarrow  0
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589406.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} \left \{ B _ {n}  ^ {-} 1 \sum _ { j= } 1 ^ { n }
 +
( X _ {i} - a _ {j} ) < x \right \}  \rightarrow \
 +
 
 +
\frac{1}{\sqrt {2 \pi }}
 +
\int\limits _ {- \infty } ^ { x }
 +
e ^ {- t  ^ {2} /2 }  d t
 +
$$
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589407.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589408.png" />, it is necessary and sufficient that the following condition (the Lindeberg condition) is satisfied:
+
for any $  x $
 +
as $  n \rightarrow \infty $,  
 +
it is necessary and sufficient that the following condition (the Lindeberg condition) is satisfied:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l0589409.png" /></td> </tr></table>
+
$$
 +
B _ {n}  ^ {-} 2 \sum _ { j= } 1 ^ { n }
 +
\int\limits _ {| x - a _ {j} | \geq  \epsilon B _ {n} }
 +
( x - a _ {j} )  ^ {2}  d V _ {j} ( x)  \rightarrow  0
 +
$$
  
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l05894010.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058940/l05894011.png" />. Sufficiency was proved by J.W. Lindeberg [[#References|[1]]] and necessity by W. Feller [[#References|[2]]].
+
as $  n \rightarrow \infty $
 +
for any $  \epsilon > 0 $.  
 +
Sufficiency was proved by J.W. Lindeberg [[#References|[1]]] and necessity by W. Feller [[#References|[2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.W. Lindeberg,  "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung"  ''Math. Z.'' , '''15'''  (1922)  pp. 211–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Feller,  "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung"  ''Math. Z.'' , '''40'''  (1935)  pp. 521–559</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Springer  (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.V. Petrov,  "Sums of independent random variables" , Springer  (1975)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.W. Lindeberg,  "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung"  ''Math. Z.'' , '''15'''  (1922)  pp. 211–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Feller,  "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung"  ''Math. Z.'' , '''40'''  (1935)  pp. 521–559</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Springer  (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.V. Petrov,  "Sums of independent random variables" , Springer  (1975)  (Translated from Russian)</TD></TR></table>

Revision as of 22:16, 5 June 2020


A theorem that establishes necessary and sufficient conditions for the asymptotic normality of the distribution function of sums of independent random variables that have finite variances. Let $ X _ {1} , X _ {2} \dots $ be a sequence of independent random variables with means $ a _ {1} , a _ {2} \dots $ and finite variances $ \sigma _ {1} ^ {2} , \sigma _ {2} ^ {2} \dots $ not all of which are zero. Let

$$ B _ {n} ^ {2} = \sum _ { j= } 1 ^ { n } \sigma _ {j} ^ {2} ,\ \ V _ {j} ( x) = {\mathsf P} \{ x _ {j} < x \} . $$

In order that

$$ B _ {n} ^ {-} 2 \max _ {1 \leq j \leq n } \ \sigma _ {j} ^ {2} \rightarrow 0 $$

and

$$ {\mathsf P} \left \{ B _ {n} ^ {-} 1 \sum _ { j= } 1 ^ { n } ( X _ {i} - a _ {j} ) < x \right \} \rightarrow \ \frac{1}{\sqrt {2 \pi }} \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} /2 } d t $$

for any $ x $ as $ n \rightarrow \infty $, it is necessary and sufficient that the following condition (the Lindeberg condition) is satisfied:

$$ B _ {n} ^ {-} 2 \sum _ { j= } 1 ^ { n } \int\limits _ {| x - a _ {j} | \geq \epsilon B _ {n} } ( x - a _ {j} ) ^ {2} d V _ {j} ( x) \rightarrow 0 $$

as $ n \rightarrow \infty $ for any $ \epsilon > 0 $. Sufficiency was proved by J.W. Lindeberg [1] and necessity by W. Feller [2].

References

[1] J.W. Lindeberg, "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung" Math. Z. , 15 (1922) pp. 211–225
[2] W. Feller, "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung" Math. Z. , 40 (1935) pp. 521–559
[3] M. Loève, "Probability theory" , Springer (1977)
[4] V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian)
How to Cite This Entry:
Lindeberg-Feller theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindeberg-Feller_theorem&oldid=22747
This article was adapted from an original article by V.V. Petrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article