Namespaces
Variants
Actions

Difference between revisions of "Limit set of a trajectory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589101.png" /> of a dynamical system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589102.png" />''
+
<!--
 +
l0589101.png
 +
$#A+1 = 69 n = 0
 +
$#C+1 = 69 : ~/encyclopedia/old_files/data/L058/L.0508910 Limit set of a trajectory
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589103.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589104.png" />-limit points (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589106.png" />-limit set) or the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589107.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l0589108.png" />-limit points (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891010.png" />-limit set) of this trajectory (cf. [[Limit point of a trajectory|Limit point of a trajectory]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891011.png" />-limit set (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891012.png" />-limit set) of a trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891013.png" /> of a system (or, in other notation, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891014.png" />, cf. [[#References|[1]]]) is the same as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891015.png" />-limit set (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891016.png" />-limit set) of the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891017.png" /> of the [[Dynamical system|dynamical system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891018.png" /> (the system with reversed time). Therefore the properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891019.png" />-limit sets are similar to those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891020.png" />-limit sets.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891021.png" /> is a closed invariant set. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891022.png" />, then the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891023.png" /> is called divergent in the positive direction; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891024.png" />, divergent in the negative direction; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891025.png" />, the trajectory is called divergent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891026.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891027.png" /> is called positively Poisson stable; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891028.png" />, negatively Poisson stable; and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891030.png" /> is called Poisson stable. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891033.png" /> is called positively asymptotic; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891035.png" />, the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891036.png" /> is called negatively asymptotic.
+
''
 +
of a dynamical system    f ^ { t } ''
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891037.png" /> is a positively Lagrange-stable point (cf. [[Lagrange stability|Lagrange stability]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891038.png" /> is a non-empty connected set,
+
The set    A _ {x}
 +
of all    \alpha -
 +
limit points (the    \alpha -
 +
limit set) or the set    \Omega _ {x}
 +
of all    \omega -
 +
limit points (the    \omega -
 +
limit set) of this trajectory (cf. [[Limit point of a trajectory|Limit point of a trajectory]]). The    \alpha -
 +
limit set (   \omega -
 +
limit set) of a trajectory    \{ f ^ { t } x \}
 +
of a system (or, in other notation,  $  f ( t, x) $,
 +
cf. [[#References|[1]]]) is the same as the    \omega -
 +
limit set (respectively,   \alpha -
 +
limit set) of the trajectory    \{ f ^ { - t } x \}
 +
of the [[Dynamical system|dynamical system]]    f ^ { - t } (
 +
the system with reversed time). Therefore the properties of    \alpha -
 +
limit sets are similar to those of    \omega -
 +
limit sets.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891039.png" /></td> </tr></table>
+
The set    \Omega _ {x}
 +
is a closed invariant set. If  $  \Omega _ {x} = \emptyset $,
 +
then the trajectory    \{ f ^ { t } x \}
 +
is called divergent in the positive direction; if  $  A _ {x} = \emptyset $,
 +
divergent in the negative direction; if  $  \Omega _ {x} = A _ {x} = \emptyset $,
 +
the trajectory is called divergent. If    x \in \Omega _ {x} ,
 +
then    x
 +
is called positively Poisson stable; if    x \in A _ {x} ,
 +
negatively Poisson stable; and if    x \in A _ {x} \cap \Omega _ {x} ,
 +
then    x
 +
is called Poisson stable. If    x \notin \Omega _ {x}
 +
and    \Omega _ {x} \neq \emptyset ,
 +
then    x
 +
is called positively asymptotic; if    x \notin A _ {x}
 +
and    A _ {x} \neq \emptyset ,
 +
the point    x
 +
is called negatively asymptotic.
  
(where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891040.png" /> is the distance from a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891041.png" /> to a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891042.png" />) and there is a [[Recurrent point|recurrent point]] (trajectory) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891043.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891044.png" /> is a fixed point, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891046.png" /> is a periodic point, then
+
If    x
 +
is a positively Lagrange-stable point (cf. [[Lagrange stability|Lagrange stability]]), then   \Omega _ {x}
 +
is a non-empty connected set,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891047.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {t \rightarrow + \infty } \
 +
d ( f ^ { t } x, \Omega _ {x} )  = 0
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891048.png" /> is the period. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891049.png" /> is not a fixed point and not a periodic point, and if the underlying metric space of the dynamical system under consideration is complete, then the points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891050.png" /> not on the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891051.png" /> are everywhere-dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891052.png" />.
+
(where   d ( z, Y)
 +
is the distance from a point    z
 +
to a set    Y )
 +
and there is a [[Recurrent point|recurrent point]] (trajectory) in    \Omega _ {x} .
 +
If    x
 +
is a fixed point, then  $  \Omega _ {x} = \{ x \} $.
 +
If    x
 +
is a periodic point, then
 +
 
 +
$$
 +
\Omega _ {x}  = \
 +
\{ f ^ { t } x \} _ {t \in \mathbf R }  = \
 +
\{ f ^ { t } x \} _ {t \in [ 0, T) }  ,
 +
$$
 +
 
 +
where    T
 +
is the period. If   x
 +
is not a fixed point and not a periodic point, and if the underlying metric space of the dynamical system under consideration is complete, then the points in   \Omega _ {x}
 +
not on the trajectory   \{ f ^ { t } x \}
 +
are everywhere-dense in   \Omega _ {x} .
  
 
If a dynamical system in the plane is given by an [[Autonomous system|autonomous system]] of differential equations
 
If a dynamical system in the plane is given by an [[Autonomous system|autonomous system]] of differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891053.png" /></td> </tr></table>
+
$$
 +
\dot{x}  = f ( x),\ \
 +
x \in \mathbf R  ^ {2} ,\ \
 +
f \in C  ^ {1}
 +
$$
  
(with a smooth vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891054.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891055.png" /> is positively Lagrange stable but not periodic, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891056.png" /> does not vanish on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891057.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891058.png" /> does not contain fixed points), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891059.png" /> is a cycle, i.e. a closed curve (the trajectory of a periodic point), while the trajectory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891060.png" /> winds, spiral-wise, around this cycle as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891061.png" />. For dynamical systems in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891063.png" />, or on a two-dimensional surface, e.g. a torus, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891064.png" />-limit sets can have a different structure. E.g., for an irrational winding on a torus (the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891066.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891067.png" /> are cyclic coordinates on the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891069.png" /> is an irrational number) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891070.png" /> coincides, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058910/l05891071.png" />, with the torus.
+
(with a smooth vector field   f  ),  
 +
  x
 +
is positively Lagrange stable but not periodic, and   f
 +
does not vanish on   \Omega _ {x} (
 +
i.e.   \Omega _ {x}
 +
does not contain fixed points), then   \Omega _ {x}
 +
is a cycle, i.e. a closed curve (the trajectory of a periodic point), while the trajectory   \{ f ^ { t } x \}
 +
winds, spiral-wise, around this cycle as   t \rightarrow \infty .  
 +
For dynamical systems in   \mathbf R  ^ {n} ,  
 +
$  n > 2 $,  
 +
or on a two-dimensional surface, e.g. a torus, the   \omega -
 +
limit sets can have a different structure. E.g., for an irrational winding on a torus (the system $  \dot \phi  = 1 $,  
 +
$  \dot \psi  = \mu $,  
 +
where   ( \phi , \psi ) (  \mathop{\rm mod}  1)
 +
are cyclic coordinates on the torus   T  ^ {2}
 +
and   \mu
 +
is an irrational number) the set   \Omega _ {x}
 +
coincides, for every $  x = ( \phi , \psi ) $,  
 +
with the torus.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 22:16, 5 June 2020


\{ f ^ { t } x \} of a dynamical system f ^ { t }

The set A _ {x} of all \alpha - limit points (the \alpha - limit set) or the set \Omega _ {x} of all \omega - limit points (the \omega - limit set) of this trajectory (cf. Limit point of a trajectory). The \alpha - limit set ( \omega - limit set) of a trajectory \{ f ^ { t } x \} of a system (or, in other notation, f ( t, x) , cf. [1]) is the same as the \omega - limit set (respectively, \alpha - limit set) of the trajectory \{ f ^ { - t } x \} of the dynamical system f ^ { - t } ( the system with reversed time). Therefore the properties of \alpha - limit sets are similar to those of \omega - limit sets.

The set \Omega _ {x} is a closed invariant set. If \Omega _ {x} = \emptyset , then the trajectory \{ f ^ { t } x \} is called divergent in the positive direction; if A _ {x} = \emptyset , divergent in the negative direction; if \Omega _ {x} = A _ {x} = \emptyset , the trajectory is called divergent. If x \in \Omega _ {x} , then x is called positively Poisson stable; if x \in A _ {x} , negatively Poisson stable; and if x \in A _ {x} \cap \Omega _ {x} , then x is called Poisson stable. If x \notin \Omega _ {x} and \Omega _ {x} \neq \emptyset , then x is called positively asymptotic; if x \notin A _ {x} and A _ {x} \neq \emptyset , the point x is called negatively asymptotic.

If x is a positively Lagrange-stable point (cf. Lagrange stability), then \Omega _ {x} is a non-empty connected set,

\lim\limits _ {t \rightarrow + \infty } \ d ( f ^ { t } x, \Omega _ {x} ) = 0

(where d ( z, Y) is the distance from a point z to a set Y ) and there is a recurrent point (trajectory) in \Omega _ {x} . If x is a fixed point, then \Omega _ {x} = \{ x \} . If x is a periodic point, then

\Omega _ {x} = \ \{ f ^ { t } x \} _ {t \in \mathbf R } = \ \{ f ^ { t } x \} _ {t \in [ 0, T) } ,

where T is the period. If x is not a fixed point and not a periodic point, and if the underlying metric space of the dynamical system under consideration is complete, then the points in \Omega _ {x} not on the trajectory \{ f ^ { t } x \} are everywhere-dense in \Omega _ {x} .

If a dynamical system in the plane is given by an autonomous system of differential equations

\dot{x} = f ( x),\ \ x \in \mathbf R ^ {2} ,\ \ f \in C ^ {1}

(with a smooth vector field f ), x is positively Lagrange stable but not periodic, and f does not vanish on \Omega _ {x} ( i.e. \Omega _ {x} does not contain fixed points), then \Omega _ {x} is a cycle, i.e. a closed curve (the trajectory of a periodic point), while the trajectory \{ f ^ { t } x \} winds, spiral-wise, around this cycle as t \rightarrow \infty . For dynamical systems in \mathbf R ^ {n} , n > 2 , or on a two-dimensional surface, e.g. a torus, the \omega - limit sets can have a different structure. E.g., for an irrational winding on a torus (the system \dot \phi = 1 , \dot \psi = \mu , where ( \phi , \psi ) ( \mathop{\rm mod} 1) are cyclic coordinates on the torus T ^ {2} and \mu is an irrational number) the set \Omega _ {x} coincides, for every x = ( \phi , \psi ) , with the torus.

References

[1] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)
[2] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)

Comments

Instead of "divergent in the positive direction" , "divergent in the negative direction" and "divergent" , also the terms positively receding, negatively receding and receding are used.

The statement above about the cyclic structure of certain limit sets in a dynamical system in the plane is part of the so-called Poincaré–Bendixson theorem (cf. Poincaré–Bendixson theory and also Limit cycle). It is valid for arbitrary dynamical systems in the plane (not necessarily given by differential equations). See [a3], Sect. VIII.1 or, for an approach avoiding local cross-sections, [a1], Chapt. 2. It follows also from [a2].

References

[a1] A. Beck, "Continuous flows in the plane" , Springer (1974)
[a2] C. Gutierrez, "Smoothing continuous flows on two-manifolds and recurrences" Ergodic Theory and Dynam. Syst. , 6 (1986) pp. 17–44
[a3] O. Hajek, "Dynamical systems in the plane" , Acad. Press (1968)
How to Cite This Entry:
Limit set of a trajectory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Limit_set_of_a_trajectory&oldid=14411
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article