Difference between revisions of "Lie derivative"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | l0585601.png | ||
| + | $#A+1 = 17 n = 0 | ||
| + | $#C+1 = 17 : ~/encyclopedia/old_files/data/L058/L.0508560 Lie derivative | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''of a tensor field $ Q $ | |
| + | in the direction of a vector field $ X $ | ||
| + | on a manifold $ M $'' | ||
| − | + | The tensor field $ {\mathcal L} _ {X} Q $ | |
| + | on $ M $, | ||
| + | of the same type as $ Q $, | ||
| + | given by the formula | ||
| − | + | $$ | |
| + | ( {\mathcal L} _ {X} Q ) _ {x} = \lim\limits _ {t \rightarrow 0 } | ||
| + | \frac{1}{t} | ||
| + | (( | ||
| + | \phi _ {t} ^ {*} Q ) _ {x} - Q _ {x} ) ,\ x \in M , | ||
| + | $$ | ||
| − | + | where $ \phi _ {t} ^ {*} $ | |
| + | is the local one-parameter group of transformations of the space of tensor fields generated by the vector field $ X $. | ||
| + | In local coordinates $ x ^ {i} $, | ||
| + | the Lie derivative of a tensor field $ Q = ( Q _ {j _ {1} \dots j _ {l} } ^ {i _ {1} {} \dots i _ {k} } ) $ | ||
| + | of type $ ( k , l ) $ | ||
| + | in the direction of the vector field $ X = ( X ^ {i} ) $ | ||
| + | has coordinates $ ( \partial _ {i} = \partial / {\partial x ^ {i} } ) $: | ||
| − | + | $$ | |
| + | ( {\mathcal L} _ {X} Q ) _ {j _ {1} \dots j _ {l} } ^ {i _ {1} \dots i _ {k} } = X ^ {i} \partial _ {i} Q _ {j _ {1} \dots j _ {l} } ^ {i _ {1} \dots i _ {k} } + | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | - \sum _ {\alpha = 1 } ^ { k } \partial _ {i} X ^ {i _ \alpha } Q _ {j _ {1} \dots j _ {k} } ^ {i _ {1} \dots \widehat{i} _ \alpha ii _ {\alpha + 1 } \dots i _ {k} } + | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | + | ||
| + | \sum _ {\beta = 1 } ^ { l } \partial _ {j _ \beta } X ^ {j} Q _ { | ||
| + | j _ {1} \dots \widehat{j} _ \beta jj _ {\beta + 1 } \dots | ||
| + | j _ {l} } ^ {i _ {1} \dots i _ {k} } . | ||
| + | $$ | ||
See also [[Lie differentiation|Lie differentiation]]. | See also [[Lie differentiation|Lie differentiation]]. | ||
Latest revision as of 22:16, 5 June 2020
of a tensor field $ Q $
in the direction of a vector field $ X $
on a manifold $ M $
The tensor field $ {\mathcal L} _ {X} Q $ on $ M $, of the same type as $ Q $, given by the formula
$$ ( {\mathcal L} _ {X} Q ) _ {x} = \lim\limits _ {t \rightarrow 0 } \frac{1}{t} (( \phi _ {t} ^ {*} Q ) _ {x} - Q _ {x} ) ,\ x \in M , $$
where $ \phi _ {t} ^ {*} $ is the local one-parameter group of transformations of the space of tensor fields generated by the vector field $ X $. In local coordinates $ x ^ {i} $, the Lie derivative of a tensor field $ Q = ( Q _ {j _ {1} \dots j _ {l} } ^ {i _ {1} {} \dots i _ {k} } ) $ of type $ ( k , l ) $ in the direction of the vector field $ X = ( X ^ {i} ) $ has coordinates $ ( \partial _ {i} = \partial / {\partial x ^ {i} } ) $:
$$ ( {\mathcal L} _ {X} Q ) _ {j _ {1} \dots j _ {l} } ^ {i _ {1} \dots i _ {k} } = X ^ {i} \partial _ {i} Q _ {j _ {1} \dots j _ {l} } ^ {i _ {1} \dots i _ {k} } + $$
$$ - \sum _ {\alpha = 1 } ^ { k } \partial _ {i} X ^ {i _ \alpha } Q _ {j _ {1} \dots j _ {k} } ^ {i _ {1} \dots \widehat{i} _ \alpha ii _ {\alpha + 1 } \dots i _ {k} } + $$
$$ + \sum _ {\beta = 1 } ^ { l } \partial _ {j _ \beta } X ^ {j} Q _ { j _ {1} \dots \widehat{j} _ \beta jj _ {\beta + 1 } \dots j _ {l} } ^ {i _ {1} \dots i _ {k} } . $$
See also Lie differentiation.
Lie derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_derivative&oldid=13834