Difference between revisions of "Levi condition"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | l0582401.png | ||
+ | $#A+1 = 41 n = 0 | ||
+ | $#C+1 = 41 : ~/encyclopedia/old_files/data/L058/L.0508240 Levi condition | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A condition, which can be effectively verified, for pseudo-convexity in the sense of Levi of domains in the complex space $ \mathbf C ^ {n} $. | |
+ | It was proposed by E.E. Levi | ||
− | + | and consists of the following. Suppose that a domain $ D $ | |
+ | is specified in a neighbourhood $ U _ \zeta $ | ||
+ | of a boundary point $ \zeta \in \partial D $ | ||
+ | by the condition | ||
− | + | $$ | |
+ | D \cap U _ \zeta = \{ {z = ( z _ {1} \dots z _ {n} ) \in U _ \zeta } : {\phi ( z) = \phi ( z , \overline{z}\; ) < 0 } \} | ||
+ | , | ||
+ | $$ | ||
− | + | where the real function $ \phi $ | |
+ | belongs to the class $ C ^ {2} ( U _ \zeta ) $ | ||
+ | and $ \mathop{\rm grad} \phi ( \zeta ) \neq 0 $. | ||
+ | If $ D $ | ||
+ | is Levi pseudo-convex at $ \zeta $, | ||
+ | then the (complex) Hessian | ||
− | + | $$ \tag{1 } | |
+ | H ( \zeta ; \phi ) ( a , \overline{a}\; ) = \sum _ {j , k = 1 } ^ { n } | ||
+ | \frac{\partial | ||
+ | ^ {2} \phi }{\partial z _ {j} \partial {\overline{z}\; } _ {k} } | ||
+ | ( \zeta ) a _ {j} {\overline{a}\; } _ {k} \geq 0 | ||
+ | $$ | ||
+ | |||
+ | is non-negative for all $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $ | ||
+ | that are complex orthogonal to $ \mathop{\rm grad} \phi ( \zeta ) $, | ||
+ | that is, are such that | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | \sum _ { k= } 1 ^ { n } | ||
+ | \frac{\partial \phi }{\partial z _ {k} } | ||
+ | ( \zeta ) a _ {k} = 0 . | ||
+ | $$ | ||
Conversely, if the condition | Conversely, if the condition | ||
− | + | $$ \tag{3 } | |
+ | H ( \zeta ; \phi ) ( a , \overline{a}\; ) > 0 | ||
+ | $$ | ||
+ | |||
+ | is satisfied at the point $ \zeta \in \partial D $ | ||
+ | for all $ a \neq 0 $ | ||
+ | satisfying (2), then $ D $ | ||
+ | is Levi pseudo-convex at $ \zeta $. | ||
− | + | For $ n = 2 $ | |
+ | the inequalities (1) and (3) given above can be replaced by the simpler equivalent inequalities $ L ( \phi ) ( \zeta ) \geq 0 $ | ||
+ | and $ L ( \phi ) ( \zeta ) > 0 $, | ||
+ | respectively, where | ||
− | + | $$ | |
+ | L ( \phi ) = - \left | | ||
− | + | \begin{array}{ccc} | |
+ | 0 & | ||
+ | \frac{\partial \phi }{\partial z _ {1} } | ||
+ | & | ||
+ | \frac{\partial \phi }{\partial z _ {2} } | ||
+ | \\ | ||
− | is the determinant of the Levi function | + | \frac{\partial \phi }{\partial {\overline{z}\; } _ {1} } |
+ | & | ||
+ | \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {1} } | ||
+ | & | ||
+ | \frac{\partial ^ {2} \phi }{\partial {\overline{z}\; } _ {1} {\partial z _ {2} } } | ||
+ | \\ | ||
+ | |||
+ | \frac{\partial | ||
+ | \phi }{\partial {\overline{z}\; } _ {2} } | ||
+ | & | ||
+ | \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {2} } | ||
+ | & | ||
+ | \frac{\partial ^ {2} \phi }{\partial z _ {2} \partial \overline{ {z }}\; _ {2} } | ||
+ | \\ | ||
+ | \end{array} | ||
+ | \right | | ||
+ | $$ | ||
+ | |||
+ | is the determinant of the Levi function $ \phi ( z) $. | ||
The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [[#References|[4]]]). | The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [[#References|[4]]]). | ||
Line 29: | Line 98: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> E.E. Levi, "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse" ''Ann. Mat. Pura Appl.'' , '''17''' (1910) pp. 61–87</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> E.E. Levi, "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse" ''Ann. Mat. Pura Appl.'' , '''18''' (1911) pp. 69–79</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> E.E. Levi, "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse" ''Ann. Mat. Pura Appl.'' , '''17''' (1910) pp. 61–87</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> E.E. Levi, "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse" ''Ann. Mat. Pura Appl.'' , '''18''' (1911) pp. 69–79</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | By definition, | + | By definition, $ D $ |
+ | is Levi pseudo-convex at $ \zeta $ | ||
+ | if (1) is satisfied for vectors that satisfy (2); $ D $ | ||
+ | is called strictly (Levi) pseudo-convex at $ \zeta $ | ||
+ | if (3) is satisfied for vectors that satisfy (2). | ||
− | The domain | + | The domain $ D $ |
+ | is called (Levi) pseudo-convex if it is Levi pseudo-convex at every boundary point. | ||
− | For domains with | + | For domains with $ C ^ {2} $ |
+ | boundary, Levi pseudo-convexity is equivalent with any of the following: | ||
− | a) | + | a) $ \mathop{\rm log} d ( z) $ |
+ | is plurisubharmonic on $ D $( | ||
+ | i.e. $ D $ | ||
+ | is Hartogs pseudo-convex), where $ d ( z) $ | ||
+ | denotes the Euclidean distance of $ z $ | ||
+ | to the boundary of $ D $. | ||
− | b) | + | b) $ K $ |
+ | relatively compact in $ D $ | ||
+ | implies $ \widehat{K} $ | ||
+ | relatively compact in $ D $, | ||
+ | where $ \widehat{K} = \{ {z \in D } : {p ( z) \leq \sup _ {z \in K } p( z) \textrm{ for every plurisubharmonic function } p \mathop{\rm on} D } \} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)</TD></TR></table> |
Revision as of 22:16, 5 June 2020
A condition, which can be effectively verified, for pseudo-convexity in the sense of Levi of domains in the complex space $ \mathbf C ^ {n} $.
It was proposed by E.E. Levi
and consists of the following. Suppose that a domain $ D $ is specified in a neighbourhood $ U _ \zeta $ of a boundary point $ \zeta \in \partial D $ by the condition
$$ D \cap U _ \zeta = \{ {z = ( z _ {1} \dots z _ {n} ) \in U _ \zeta } : {\phi ( z) = \phi ( z , \overline{z}\; ) < 0 } \} , $$
where the real function $ \phi $ belongs to the class $ C ^ {2} ( U _ \zeta ) $ and $ \mathop{\rm grad} \phi ( \zeta ) \neq 0 $. If $ D $ is Levi pseudo-convex at $ \zeta $, then the (complex) Hessian
$$ \tag{1 } H ( \zeta ; \phi ) ( a , \overline{a}\; ) = \sum _ {j , k = 1 } ^ { n } \frac{\partial ^ {2} \phi }{\partial z _ {j} \partial {\overline{z}\; } _ {k} } ( \zeta ) a _ {j} {\overline{a}\; } _ {k} \geq 0 $$
is non-negative for all $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $ that are complex orthogonal to $ \mathop{\rm grad} \phi ( \zeta ) $, that is, are such that
$$ \tag{2 } \sum _ { k= } 1 ^ { n } \frac{\partial \phi }{\partial z _ {k} } ( \zeta ) a _ {k} = 0 . $$
Conversely, if the condition
$$ \tag{3 } H ( \zeta ; \phi ) ( a , \overline{a}\; ) > 0 $$
is satisfied at the point $ \zeta \in \partial D $ for all $ a \neq 0 $ satisfying (2), then $ D $ is Levi pseudo-convex at $ \zeta $.
For $ n = 2 $ the inequalities (1) and (3) given above can be replaced by the simpler equivalent inequalities $ L ( \phi ) ( \zeta ) \geq 0 $ and $ L ( \phi ) ( \zeta ) > 0 $, respectively, where
$$ L ( \phi ) = - \left | \begin{array}{ccc} 0 & \frac{\partial \phi }{\partial z _ {1} } & \frac{\partial \phi }{\partial z _ {2} } \\ \frac{\partial \phi }{\partial {\overline{z}\; } _ {1} } & \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {1} } & \frac{\partial ^ {2} \phi }{\partial {\overline{z}\; } _ {1} {\partial z _ {2} } } \\ \frac{\partial \phi }{\partial {\overline{z}\; } _ {2} } & \frac{\partial ^ {2} \phi }{\partial z _ {1} \partial {\overline{z}\; } _ {2} } & \frac{\partial ^ {2} \phi }{\partial z _ {2} \partial \overline{ {z }}\; _ {2} } \\ \end{array} \right | $$
is the determinant of the Levi function $ \phi ( z) $.
The Levi condition (1)–(3) has also been generalized to domains on complex manifolds (see [4]).
References
[1a] | E.E. Levi, "Studii sui punti singolari essenziali delle funzioni analiticke de due o più variabili complesse" Ann. Mat. Pura Appl. , 17 (1910) pp. 61–87 |
[1b] | E.E. Levi, "Sulle ipersurficie dello spazio a 4 dimensione che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse" Ann. Mat. Pura Appl. , 18 (1911) pp. 69–79 |
[2] | V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian) |
[3] | B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian) |
[4] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) |
Comments
By definition, $ D $ is Levi pseudo-convex at $ \zeta $ if (1) is satisfied for vectors that satisfy (2); $ D $ is called strictly (Levi) pseudo-convex at $ \zeta $ if (3) is satisfied for vectors that satisfy (2).
The domain $ D $ is called (Levi) pseudo-convex if it is Levi pseudo-convex at every boundary point.
For domains with $ C ^ {2} $ boundary, Levi pseudo-convexity is equivalent with any of the following:
a) $ \mathop{\rm log} d ( z) $ is plurisubharmonic on $ D $( i.e. $ D $ is Hartogs pseudo-convex), where $ d ( z) $ denotes the Euclidean distance of $ z $ to the boundary of $ D $.
b) $ K $ relatively compact in $ D $ implies $ \widehat{K} $ relatively compact in $ D $, where $ \widehat{K} = \{ {z \in D } : {p ( z) \leq \sup _ {z \in K } p( z) \textrm{ for every plurisubharmonic function } p \mathop{\rm on} D } \} $.
References
[a1] | S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) |
Levi condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Levi_condition&oldid=16264