Difference between revisions of "Length"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0581401.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/L058/L.0508140 Length | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A numerical characteristic of the extension of lines in a metric space. The length of a segment of a straight line is the distance between its ends, measured by means of some segment accepted as the unit length. The length of a broken line is the sum of the lengths of its parts. The length of a simple arc is the least upper bound of the lengths of the broken lines inscribed in this arc. Any continuous curve has a length, finite or infinite. If its length is finite, the curve is known as rectifiable. The length of a planar curve defined in rectangular coordinates by an equation $ y = f( x) $, | ||
+ | $ a \leq x \leq b $( | ||
+ | $ f $ | ||
+ | having a continuous derivative $ f ^ { \prime } $) | ||
+ | is given by the integral | ||
+ | |||
+ | $$ | ||
+ | s = \int\limits _ { a } ^ { b } \sqrt {1 + [ f ^ { \prime } ( x) ] ^ {2} } d x . | ||
+ | $$ | ||
If the curve is given in parametric form | If the curve is given in parametric form | ||
− | + | $$ | |
+ | x = x ( t) ,\ y = y ( t) ,\ t _ {1} \leq t \leq t _ {2} , | ||
+ | $$ | ||
its length is given by | its length is given by | ||
− | + | $$ | |
+ | s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {[ x ^ \prime ( t) ] ^ {2} + [ y ^ \prime ( t) ] ^ {2} } d t . | ||
+ | $$ | ||
− | The length of a rectifiable curve does not depend on the parametrization. The length of a spatial curve given in parametric form | + | The length of a rectifiable curve does not depend on the parametrization. The length of a spatial curve given in parametric form $ x = x ( t) $, |
+ | $ y = y ( t) $, | ||
+ | $ z = z ( t) $, | ||
+ | $ t _ {1} \leq t \leq t _ {2} $, | ||
+ | is given by the formula | ||
− | + | $$ | |
+ | s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {[ x ^ \prime ( t) ] ^ {2} + [ y ^ \prime ( t) ] ^ {2} + [ z ^ \prime ( t) ] ^ {2} } d t . | ||
+ | $$ | ||
− | In the case of an | + | In the case of an $ n $- |
+ | dimensional space, | ||
− | + | $$ | |
+ | s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {\sum _ {i = 1 } ^ { n } [ x _ {i} ^ \prime ( t) ] ^ {2} } d t . | ||
+ | $$ | ||
− | Let | + | Let $ \gamma $ |
+ | be a continuously-differentiable curve, given by functions $ u = u ( t) $, | ||
+ | $ v= v ( t) $, | ||
+ | on a continuously-differentiable surface $ \mathbf r = \mathbf r ( u , v ) $. | ||
+ | Then the length of an arc of the curve counted from the point corresponding to the parameter value $ t = t _ {0} $ | ||
+ | is equal to | ||
− | + | $$ | |
− | + | s ( t , t _ {0} ) = \int\limits _ {t _ {0} } ^ { t } | \mathbf r ^ \prime ( t) | |
− | + | | dt = \int\limits _ {\gamma ( P _ {0} , P ) } | d \mathbf r ( u , v | |
− | + | ) | = \int\limits _ {t _ {0} } ^ { t } \sqrt I , | |
− | + | $$ | |
+ | where $ I $ | ||
+ | is the [[First fundamental form|first fundamental form]] of the surface. The length of a continuously-differentiable curve given by functions $ x ^ {i} = x ^ {i} ( t) $, | ||
+ | $ t _ {1} \leq t \leq t _ {0} $, | ||
+ | in a Riemannian space with metric tensor $ g _ {ik} $ | ||
+ | is | ||
+ | $$ | ||
+ | s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } d s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {g _ {ik} | ||
+ | \frac{d x ^ {i} }{dt} | ||
+ | |||
+ | \frac{d x ^ {k} }{dt} | ||
+ | } d t . | ||
+ | $$ | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Blumenthal, K. Menger, "Studies in geometry" , Freeman (1970)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Busemann, "The geometry of geodesics" , Acad. Press (1955)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''1–2''' , Springer (1987) (Translated from French) {{MR|0903026}} {{MR|0895392}} {{MR|0882916}} {{MR|0882541}} {{ZBL|0619.53001}} {{ZBL|0606.51001}} {{ZBL|0606.00020}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Blumenthal, K. Menger, "Studies in geometry" , Freeman (1970) {{MR|0273492}} {{ZBL|0204.53401}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Busemann, "The geometry of geodesics" , Acad. Press (1955) {{MR|0075623}} {{ZBL|0112.37002}} </TD></TR></table> |
Latest revision as of 22:16, 5 June 2020
A numerical characteristic of the extension of lines in a metric space. The length of a segment of a straight line is the distance between its ends, measured by means of some segment accepted as the unit length. The length of a broken line is the sum of the lengths of its parts. The length of a simple arc is the least upper bound of the lengths of the broken lines inscribed in this arc. Any continuous curve has a length, finite or infinite. If its length is finite, the curve is known as rectifiable. The length of a planar curve defined in rectangular coordinates by an equation $ y = f( x) $,
$ a \leq x \leq b $(
$ f $
having a continuous derivative $ f ^ { \prime } $)
is given by the integral
$$ s = \int\limits _ { a } ^ { b } \sqrt {1 + [ f ^ { \prime } ( x) ] ^ {2} } d x . $$
If the curve is given in parametric form
$$ x = x ( t) ,\ y = y ( t) ,\ t _ {1} \leq t \leq t _ {2} , $$
its length is given by
$$ s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {[ x ^ \prime ( t) ] ^ {2} + [ y ^ \prime ( t) ] ^ {2} } d t . $$
The length of a rectifiable curve does not depend on the parametrization. The length of a spatial curve given in parametric form $ x = x ( t) $, $ y = y ( t) $, $ z = z ( t) $, $ t _ {1} \leq t \leq t _ {2} $, is given by the formula
$$ s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {[ x ^ \prime ( t) ] ^ {2} + [ y ^ \prime ( t) ] ^ {2} + [ z ^ \prime ( t) ] ^ {2} } d t . $$
In the case of an $ n $- dimensional space,
$$ s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {\sum _ {i = 1 } ^ { n } [ x _ {i} ^ \prime ( t) ] ^ {2} } d t . $$
Let $ \gamma $ be a continuously-differentiable curve, given by functions $ u = u ( t) $, $ v= v ( t) $, on a continuously-differentiable surface $ \mathbf r = \mathbf r ( u , v ) $. Then the length of an arc of the curve counted from the point corresponding to the parameter value $ t = t _ {0} $ is equal to
$$ s ( t , t _ {0} ) = \int\limits _ {t _ {0} } ^ { t } | \mathbf r ^ \prime ( t) | dt = \int\limits _ {\gamma ( P _ {0} , P ) } | d \mathbf r ( u , v ) | = \int\limits _ {t _ {0} } ^ { t } \sqrt I , $$
where $ I $ is the first fundamental form of the surface. The length of a continuously-differentiable curve given by functions $ x ^ {i} = x ^ {i} ( t) $, $ t _ {1} \leq t \leq t _ {0} $, in a Riemannian space with metric tensor $ g _ {ik} $ is
$$ s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } d s = \int\limits _ { t _ {1} } ^ { {t _ 2 } } \sqrt {g _ {ik} \frac{d x ^ {i} }{dt} \frac{d x ^ {k} }{dt} } d t . $$
Comments
References
[a1] | M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French) MR0903026 MR0895392 MR0882916 MR0882541 Zbl 0619.53001 Zbl 0606.51001 Zbl 0606.00020 |
[a2] | L. Blumenthal, K. Menger, "Studies in geometry" , Freeman (1970) MR0273492 Zbl 0204.53401 |
[a3] | H. Busemann, "The geometry of geodesics" , Acad. Press (1955) MR0075623 Zbl 0112.37002 |
Length. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Length&oldid=16816