Difference between revisions of "Lebesgue measure"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0578701.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/L057/L.0507870 Lebesgue measure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''in $ \mathbf R ^ {n} $'' | |
− | + | A countably-additive measure $ \lambda $ | |
+ | which is an extension of the volume as a function of $ n $- | ||
+ | dimensional intervals to a wider class $ {\mathcal A} $ | ||
+ | of sets, namely the Lebesgue-measurable sets. The class $ {\mathcal A} $ | ||
+ | contains the class $ {\mathcal B} $ | ||
+ | of Borel sets (cf. [[Borel set|Borel set]]) and consists of all sets of the form $ A \cup B $ | ||
+ | where $ B \subset B _ {1} $, | ||
+ | $ A , B _ {1} \in {\mathcal B} $ | ||
+ | and $ \lambda ( B _ {1} ) = 0 $. | ||
+ | One has for any $ A \in {\mathcal A} $, | ||
− | + | $$ \tag{* } | |
+ | \lambda ( A) = \inf \sum _ { j } \lambda ( I _ {j} ) , | ||
+ | $$ | ||
− | for every | + | where the infimum is taken over all possible countable families of intervals $ \{ I _ {j} \} $ |
+ | such that $ A \subset \cup I _ {j} $. | ||
+ | Formula (*) makes sense for every $ A \subset \mathbf R ^ {n} $ | ||
+ | and defines a set function $ \lambda ^ {*} $( | ||
+ | which coincides with $ \lambda $ | ||
+ | on $ {\mathcal A} $), | ||
+ | called the outer Lebesgue measure. A set $ A $ | ||
+ | belongs to $ {\mathcal A} $ | ||
+ | if and only if | ||
− | + | $$ | |
+ | \lambda ( I) = \lambda ^ {*} ( A \cap I ) + \lambda ^ {*} ( I \setminus A ) | ||
+ | $$ | ||
− | + | for every bounded interval $ I $; | |
+ | for all $ A \subset \mathbf R ^ {n} $, | ||
− | + | $$ | |
+ | \lambda ^ {*} ( A) = \inf | ||
+ | \{ {\lambda ( U ) } : {A \subset U , U \textrm{ is o p e n } } \} | ||
+ | , | ||
+ | $$ | ||
− | + | and for all $ A \in {\mathcal A} $, | |
+ | |||
+ | $$ | ||
+ | \lambda ( A) = \lambda ^ {*} ( A) = \ | ||
+ | \sup \{ {\lambda ( F ) } : {A \supset F , F \textrm{ is compact } | ||
+ | } \} | ||
+ | ; | ||
+ | $$ | ||
+ | |||
+ | if $ \lambda ^ {*} ( A) < \infty $, | ||
+ | then the last equality is sufficient for the membership $ A \in {\mathcal A} $; | ||
+ | if $ O $ | ||
+ | is an orthogonal operator in $ \mathbf R ^ {n} $ | ||
+ | and $ a \in \mathbf R ^ {n} $, | ||
+ | then $ \lambda ( OA + a ) = \lambda ( A) $ | ||
+ | for any $ A \in {\mathcal A} $. | ||
+ | The Lebesgue measure was introduced by H. Lebesgue [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Lebesgue, "Intégrale, longeur, aire" , Univ. Paris (1902) (Thesis) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian) {{MR|1025126}} {{MR|0708717}} {{MR|0630899}} {{MR|0435771}} {{MR|0377444}} {{MR|0234241}} {{MR|0215962}} {{MR|0118796}} {{MR|1530727}} {{MR|0118795}} {{MR|0085462}} {{MR|0070045}} {{ZBL|0932.46001}} {{ZBL|0672.46001}} {{ZBL|0501.46001}} {{ZBL|0501.46002}} {{ZBL|0235.46001}} {{ZBL|0103.08801}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Lebesgue, "Intégrale, longeur, aire" , Univ. Paris (1902) (Thesis) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian) {{MR|1025126}} {{MR|0708717}} {{MR|0630899}} {{MR|0435771}} {{MR|0377444}} {{MR|0234241}} {{MR|0215962}} {{MR|0118796}} {{MR|1530727}} {{MR|0118795}} {{MR|0085462}} {{MR|0070045}} {{ZBL|0932.46001}} {{ZBL|0672.46001}} {{ZBL|0501.46001}} {{ZBL|0501.46002}} {{ZBL|0235.46001}} {{ZBL|0103.08801}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Lebesgue measure is a very particular example of a [[Haar measure|Haar measure]], of a product measure (when | + | The Lebesgue measure is a very particular example of a [[Haar measure|Haar measure]], of a product measure (when $ n > 1 $) |
+ | and of a [[Hausdorff measure|Hausdorff measure]]. Actually it is historically the first example of such measures. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) {{MR|0188387}} {{ZBL|0137.03202}} </TD></TR></table> |
Revision as of 22:16, 5 June 2020
in $ \mathbf R ^ {n} $
A countably-additive measure $ \lambda $ which is an extension of the volume as a function of $ n $- dimensional intervals to a wider class $ {\mathcal A} $ of sets, namely the Lebesgue-measurable sets. The class $ {\mathcal A} $ contains the class $ {\mathcal B} $ of Borel sets (cf. Borel set) and consists of all sets of the form $ A \cup B $ where $ B \subset B _ {1} $, $ A , B _ {1} \in {\mathcal B} $ and $ \lambda ( B _ {1} ) = 0 $. One has for any $ A \in {\mathcal A} $,
$$ \tag{* } \lambda ( A) = \inf \sum _ { j } \lambda ( I _ {j} ) , $$
where the infimum is taken over all possible countable families of intervals $ \{ I _ {j} \} $ such that $ A \subset \cup I _ {j} $. Formula (*) makes sense for every $ A \subset \mathbf R ^ {n} $ and defines a set function $ \lambda ^ {*} $( which coincides with $ \lambda $ on $ {\mathcal A} $), called the outer Lebesgue measure. A set $ A $ belongs to $ {\mathcal A} $ if and only if
$$ \lambda ( I) = \lambda ^ {*} ( A \cap I ) + \lambda ^ {*} ( I \setminus A ) $$
for every bounded interval $ I $; for all $ A \subset \mathbf R ^ {n} $,
$$ \lambda ^ {*} ( A) = \inf \{ {\lambda ( U ) } : {A \subset U , U \textrm{ is o p e n } } \} , $$
and for all $ A \in {\mathcal A} $,
$$ \lambda ( A) = \lambda ^ {*} ( A) = \ \sup \{ {\lambda ( F ) } : {A \supset F , F \textrm{ is compact } } \} ; $$
if $ \lambda ^ {*} ( A) < \infty $, then the last equality is sufficient for the membership $ A \in {\mathcal A} $; if $ O $ is an orthogonal operator in $ \mathbf R ^ {n} $ and $ a \in \mathbf R ^ {n} $, then $ \lambda ( OA + a ) = \lambda ( A) $ for any $ A \in {\mathcal A} $. The Lebesgue measure was introduced by H. Lebesgue [1].
References
[1] | H. Lebesgue, "Intégrale, longeur, aire" , Univ. Paris (1902) (Thesis) |
[2] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
[3] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802 |
[4] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) MR1025126 MR0708717 MR0630899 MR0435771 MR0377444 MR0234241 MR0215962 MR0118796 MR1530727 MR0118795 MR0085462 MR0070045 Zbl 0932.46001 Zbl 0672.46001 Zbl 0501.46001 Zbl 0501.46002 Zbl 0235.46001 Zbl 0103.08801 |
Comments
The Lebesgue measure is a very particular example of a Haar measure, of a product measure (when $ n > 1 $) and of a Hausdorff measure. Actually it is historically the first example of such measures.
References
[a1] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |
Lebesgue measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_measure&oldid=28231