Namespaces
Variants
Actions

Difference between revisions of "Laplace vector"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An integral of motion of a point of constant mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575601.png" /> in the Newton–Coulomb potential field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575602.png" />:
+
<!--
 +
l0575601.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/L057/L.0507560 Laplace vector
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575603.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575604.png" /></td> </tr></table>
+
An integral of motion of a point of constant mass  $  m $
 +
in the Newton–Coulomb potential field  $  V ( r) = \kappa / r $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575605.png" /></td> </tr></table>
+
$$
 +
\Lambda _ {1}  = ( x _ {1} \dot{x} _ {4} - x _ {4} \dot{x} _ {1} )
 +
=
 +
\frac{1}{m}
 +
( \dot{x} _ {2} L _ {3} - \dot{x} _ {3} L _ {2} ) +
 +
\kappa
 +
\frac{x _ {1} }{r}
 +
,
 +
$$
 +
 
 +
$$
 +
\Lambda _ {2}  = ( x _ {2} \dot{x} _ {4} - x _ {4} \dot{x} _ {2} )  = \
 +
 
 +
\frac{1}{m}
 +
( \dot{x} _ {3} L _ {1} - \dot{x} _ {1} L _ {3} ) + \kappa
 +
\frac{x _ {2} }{r}
 +
,
 +
$$
 +
 
 +
$$
 +
\Lambda _ {3}  = ( x _ {3} \dot{x} _ {4} - x _ {4} \dot{x} _ {3} )  = \
 +
 
 +
\frac{1}{m}
 +
( \dot{x} _ {1} L _ {2} - \dot{x} _ {2} L _ {1} ) + \kappa
 +
\frac{x _ {3} }{r}
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575606.png" /></td> </tr></table>
+
$$
 +
= \sqrt {x _ {1}  ^ {2} + x _ {2}  ^ {2} + x _ {3}  ^ {2} } ; \ \
 +
= ( x _ {1} , x _ {2} , x _ {3} )  \in  \mathbf R  ^ {3} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575607.png" /></td> </tr></table>
+
$$
 +
x _ {4}  =
 +
\frac{1}{2}
 +
 +
\frac{d}{dt}
 +
r  ^ {2} ; \  m
 +
\dot{x} dot _ {4}  = \kappa
 +
\frac{x _ {4} }{r}
 +
;
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575608.png" />, the angular momentum, determines the plane of the orbit (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l0575609.png" />) and, together with the energy integral
+
$  L = ( L _ {1} , L _ {2} , L _ {3} ) $,  
 +
the angular momentum, determines the plane of the orbit (for $  L \neq 0 $)  
 +
and, together with the energy integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756010.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{m}{2}
 +
 
 +
( \dot{x}  _ {1}  ^ {2} + \dot{x}  _ {2}  ^ {2} +
 +
\dot{x}  _ {3}  ^ {2} ) +
 +
\frac \kappa {r}
 +
,
 +
$$
  
 
determines its configuration. The Laplace vector determines the orientation of the Kepler orbit and is proportional to the position vector of its second focus.
 
determines its configuration. The Laplace vector determines the orientation of the Kepler orbit and is proportional to the position vector of its second focus.
Line 21: Line 78:
 
An analogue of the Laplace vector also exists for the potential of an isotropic harmonic oscillator, which together with the Newton potential takes an exceptional position among the potentials of a central field.
 
An analogue of the Laplace vector also exists for the potential of an isotropic harmonic oscillator, which together with the Newton potential takes an exceptional position among the potentials of a central field.
  
In a centrally-perturbed Newtonian field the Laplace vector is not an integral, but precesses. For example, in Kepler's problem with relativistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756011.png" />-momentum the angle of rotation of the Laplace vector is
+
In a centrally-perturbed Newtonian field the Laplace vector is not an integral, but precesses. For example, in Kepler's problem with relativistic $  4 $-
 +
momentum the angle of rotation of the Laplace vector is
 +
 
 +
$$
 +
| \Delta \phi |  =  2 \pi
 +
\left ( \left ( 1 -
 +
\frac{\kappa  ^ {2} }{c  ^ {2} L  ^ {2} }
 +
\right )  ^ {-} 1/2 - 1 \right )  \approx \
 +
 
 +
\frac{\pi \kappa  ^ {2} }{L  ^ {2} c  ^ {2} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756012.png" /></td> </tr></table>
+
$$
  
for the period of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756013.png" />. In quantum theory the existence of the Laplace vector explains the  "random degeneration"  of the levels of energy of a hydrogen-like atom with respect to the azimuthal quantum number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756014.png" /> in addition to the degeneration with respect to the magnetic quantum number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756015.png" />, which necessary holds for an arbitrary central potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756016.png" />. The [[Schrödinger equation|Schrödinger equation]] of a Coulomb oscillator corresponds to two identical particles, one of which moves in the field of the Coulomb centre, situated at the first focus of the Kepler ellipse, while the other moves in the field of the second focus. The [[Hamiltonian|Hamiltonian]] of each particle is invariant with respect to the group of orthogonal transformations of its coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756017.png" />, and the whole system is invariant with respect to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756018.png" /> of orthogonal transformations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057560/l05756019.png" />-dimensional Euclidean space.
+
for the period of $  r $.  
 +
In quantum theory the existence of the Laplace vector explains the  "random degeneration"  of the levels of energy of a hydrogen-like atom with respect to the azimuthal quantum number l $
 +
in addition to the degeneration with respect to the magnetic quantum number $  m $,  
 +
which necessary holds for an arbitrary central potential $  V ( r) $.  
 +
The [[Schrödinger equation|Schrödinger equation]] of a Coulomb oscillator corresponds to two identical particles, one of which moves in the field of the Coulomb centre, situated at the first focus of the Kepler ellipse, while the other moves in the field of the second focus. The [[Hamiltonian|Hamiltonian]] of each particle is invariant with respect to the group of orthogonal transformations of its coordinates $  O ( 3) $,  
 +
and the whole system is invariant with respect to the group $  O ( 3) \times O ( 3) = O ( 4) $
 +
of orthogonal transformations of the $  4 $-
 +
dimensional Euclidean space.
  
 
The Laplace vector was introduced by J. Hermann (see [[#References|[1]]]) and P. Laplace (see [[#References|[2]]]), apparently independently. The Laplace vector is sometimes called the Runge–Lenz vector by physicists.
 
The Laplace vector was introduced by J. Hermann (see [[#References|[1]]]) and P. Laplace (see [[#References|[2]]]), apparently independently. The Laplace vector is sometimes called the Runge–Lenz vector by physicists.

Latest revision as of 22:15, 5 June 2020


An integral of motion of a point of constant mass $ m $ in the Newton–Coulomb potential field $ V ( r) = \kappa / r $:

$$ \Lambda _ {1} = ( x _ {1} \dot{x} _ {4} - x _ {4} \dot{x} _ {1} ) = \frac{1}{m} ( \dot{x} _ {2} L _ {3} - \dot{x} _ {3} L _ {2} ) + \kappa \frac{x _ {1} }{r} , $$

$$ \Lambda _ {2} = ( x _ {2} \dot{x} _ {4} - x _ {4} \dot{x} _ {2} ) = \ \frac{1}{m} ( \dot{x} _ {3} L _ {1} - \dot{x} _ {1} L _ {3} ) + \kappa \frac{x _ {2} }{r} , $$

$$ \Lambda _ {3} = ( x _ {3} \dot{x} _ {4} - x _ {4} \dot{x} _ {3} ) = \ \frac{1}{m} ( \dot{x} _ {1} L _ {2} - \dot{x} _ {2} L _ {1} ) + \kappa \frac{x _ {3} }{r} , $$

where

$$ r = \sqrt {x _ {1} ^ {2} + x _ {2} ^ {2} + x _ {3} ^ {2} } ; \ \ x = ( x _ {1} , x _ {2} , x _ {3} ) \in \mathbf R ^ {3} ; $$

$$ x _ {4} = \frac{1}{2} \frac{d}{dt} r ^ {2} ; \ m \dot{x} dot _ {4} = \kappa \frac{x _ {4} }{r} ; $$

$ L = ( L _ {1} , L _ {2} , L _ {3} ) $, the angular momentum, determines the plane of the orbit (for $ L \neq 0 $) and, together with the energy integral

$$ E = \frac{m}{2} ( \dot{x} _ {1} ^ {2} + \dot{x} _ {2} ^ {2} + \dot{x} _ {3} ^ {2} ) + \frac \kappa {r} , $$

determines its configuration. The Laplace vector determines the orientation of the Kepler orbit and is proportional to the position vector of its second focus.

An analogue of the Laplace vector also exists for the potential of an isotropic harmonic oscillator, which together with the Newton potential takes an exceptional position among the potentials of a central field.

In a centrally-perturbed Newtonian field the Laplace vector is not an integral, but precesses. For example, in Kepler's problem with relativistic $ 4 $- momentum the angle of rotation of the Laplace vector is

$$ | \Delta \phi | = 2 \pi \left ( \left ( 1 - \frac{\kappa ^ {2} }{c ^ {2} L ^ {2} } \right ) ^ {-} 1/2 - 1 \right ) \approx \ \frac{\pi \kappa ^ {2} }{L ^ {2} c ^ {2} } $$

for the period of $ r $. In quantum theory the existence of the Laplace vector explains the "random degeneration" of the levels of energy of a hydrogen-like atom with respect to the azimuthal quantum number $ l $ in addition to the degeneration with respect to the magnetic quantum number $ m $, which necessary holds for an arbitrary central potential $ V ( r) $. The Schrödinger equation of a Coulomb oscillator corresponds to two identical particles, one of which moves in the field of the Coulomb centre, situated at the first focus of the Kepler ellipse, while the other moves in the field of the second focus. The Hamiltonian of each particle is invariant with respect to the group of orthogonal transformations of its coordinates $ O ( 3) $, and the whole system is invariant with respect to the group $ O ( 3) \times O ( 3) = O ( 4) $ of orthogonal transformations of the $ 4 $- dimensional Euclidean space.

The Laplace vector was introduced by J. Hermann (see [1]) and P. Laplace (see [2]), apparently independently. The Laplace vector is sometimes called the Runge–Lenz vector by physicists.

References

[1] J. Hermann, Giornale de Letterati d'Italia, Venice , 2 (1710) pp. 447–467
[2] P.S. Laplace, "Celestial mechanics" , 1 , Chelsea, reprint (1966) (Translated from French)
[3] O. Volk, "Miscellanea from the history of celestial mechanics II" Celestial Mech. , 14 (1976) pp. 365–382
[4] G.N. Duboshin, "Celestial mechanics. Fundamental problems and methods" , Moscow (1975) (In Russian)
[5] V.S. Popov, , Higher energy physics and the theory of elementary particles , Kiev (1967) pp. 702–727 (In Russian)
How to Cite This Entry:
Laplace vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace_vector&oldid=11555
This article was adapted from an original article by V.V. Okhrimenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article