Difference between revisions of "Lah number"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l1100601.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/L110/L.1100060 Lah number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A coefficient in the expansion | A coefficient in the expansion | ||
− | + | $$ | |
+ | ( - x ) ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } x ^ {( k ) } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) , \quad k \geq 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | x ^ {( 0 ) } = 1, | ||
+ | $$ | ||
are the falling factorials. | are the falling factorials. | ||
− | Replacing | + | Replacing $ x $ |
+ | by $ - x $, | ||
+ | it follows that | ||
− | + | $$ | |
+ | x ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } ( - x ) ^ {( k ) } . | ||
+ | $$ | ||
The Lah numbers are given explicitly by | The Lah numbers are given explicitly by | ||
− | + | $$ | |
+ | L _ {n,k } = ( - 1 ) ^ {n} \left ( \begin{array}{c} | ||
+ | {n - 1 } \\ | ||
+ | {k - 1 } | ||
+ | \end{array} | ||
+ | \right ) { | ||
+ | \frac{n! }{k! } | ||
+ | } , \quad n \geq k \geq 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ {0,0 } = 1, \quad L _ {n,0 } = 0, n \geq 1, | ||
+ | $$ | ||
− | and they are tabulated in [[#References|[a1]]] for | + | and they are tabulated in [[#References|[a1]]] for $ 1 \leq k \leq n \leq 10 $. |
The numbers satisfy the [[Recurrence relation|recurrence relation]] | The numbers satisfy the [[Recurrence relation|recurrence relation]] | ||
− | + | $$ | |
+ | L _ {n + 1,k } = - ( n + k ) L _ {n,k } - L _ {n,k - 1 } , | ||
+ | $$ | ||
and have the [[Generating function|generating function]] | and have the [[Generating function|generating function]] | ||
− | + | $$ | |
+ | { \mathop{\rm exp} } ( ut ( 1 - t ) ^ {- 1 } ) = \sum _ {n = 0 } ^ \infty \sum _ {k = 0 } ^ { n } ( - 1 ) ^ {n} { | ||
+ | \frac{L _ {n,k } u ^ {k} t ^ {n} }{n! } | ||
+ | } . | ||
+ | $$ | ||
They are related to Stirling numbers of the first and second kinds (cf. [[Combinatorial analysis|Combinatorial analysis]]), and to Bell polynomials (cf. [[Bell polynomial|Bell polynomial]]) by | They are related to Stirling numbers of the first and second kinds (cf. [[Combinatorial analysis|Combinatorial analysis]]), and to Bell polynomials (cf. [[Bell polynomial|Bell polynomial]]) by | ||
− | + | $$ | |
+ | L _ {n,k } = \sum ( - 1 ) ^ {r} s ( n,r ) S ( r,k ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | ( - 1 ) ^ {n} B _ {n,k } ( 1!, \dots, ( n - k + 1 ) ! ) . | ||
+ | $$ | ||
See also [[#References|[a4]]] for a connection with [[Laguerre polynomials|Laguerre polynomials]]. | See also [[#References|[a4]]] for a connection with [[Laguerre polynomials|Laguerre polynomials]]. | ||
− | If | + | If $ a _ {n} $ |
+ | and $ b _ {n} $ | ||
+ | are sequences, then | ||
− | + | $$ | |
+ | a _ {n} = \sum _ { k } L _ {n,k } b _ {k} \iff b _ {n} = \sum _ { k } L _ {n,k } a _ {k} . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Comtet, "Advanced combinatorics" , Reidel (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I. Lah, "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik" ''Mitteil. Math. Statist.'' , '''7''' (1955) pp. 203–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Riordan, "Combinatorial analysis" , Wiley (1958)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Roman, "The umbral calculus" , Acad. Press (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Comtet, "Advanced combinatorics" , Reidel (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I. Lah, "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik" ''Mitteil. Math. Statist.'' , '''7''' (1955) pp. 203–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Riordan, "Combinatorial analysis" , Wiley (1958)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Roman, "The umbral calculus" , Acad. Press (1984)</TD></TR></table> |
Latest revision as of 22:15, 5 June 2020
A coefficient in the expansion
$$ ( - x ) ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } x ^ {( k ) } , $$
where
$$ x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) , \quad k \geq 1, $$
$$ x ^ {( 0 ) } = 1, $$
are the falling factorials.
Replacing $ x $ by $ - x $, it follows that
$$ x ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } ( - x ) ^ {( k ) } . $$
The Lah numbers are given explicitly by
$$ L _ {n,k } = ( - 1 ) ^ {n} \left ( \begin{array}{c} {n - 1 } \\ {k - 1 } \end{array} \right ) { \frac{n! }{k! } } , \quad n \geq k \geq 1, $$
$$ L _ {0,0 } = 1, \quad L _ {n,0 } = 0, n \geq 1, $$
and they are tabulated in [a1] for $ 1 \leq k \leq n \leq 10 $.
The numbers satisfy the recurrence relation
$$ L _ {n + 1,k } = - ( n + k ) L _ {n,k } - L _ {n,k - 1 } , $$
and have the generating function
$$ { \mathop{\rm exp} } ( ut ( 1 - t ) ^ {- 1 } ) = \sum _ {n = 0 } ^ \infty \sum _ {k = 0 } ^ { n } ( - 1 ) ^ {n} { \frac{L _ {n,k } u ^ {k} t ^ {n} }{n! } } . $$
They are related to Stirling numbers of the first and second kinds (cf. Combinatorial analysis), and to Bell polynomials (cf. Bell polynomial) by
$$ L _ {n,k } = \sum ( - 1 ) ^ {r} s ( n,r ) S ( r,k ) = $$
$$ = ( - 1 ) ^ {n} B _ {n,k } ( 1!, \dots, ( n - k + 1 ) ! ) . $$
See also [a4] for a connection with Laguerre polynomials.
If $ a _ {n} $ and $ b _ {n} $ are sequences, then
$$ a _ {n} = \sum _ { k } L _ {n,k } b _ {k} \iff b _ {n} = \sum _ { k } L _ {n,k } a _ {k} . $$
References
[a1] | L. Comtet, "Advanced combinatorics" , Reidel (1974) |
[a2] | I. Lah, "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik" Mitteil. Math. Statist. , 7 (1955) pp. 203–216 |
[a3] | J. Riordan, "Combinatorial analysis" , Wiley (1958) |
[a4] | S. Roman, "The umbral calculus" , Acad. Press (1984) |
Lah number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lah_number&oldid=12804