Namespaces
Variants
Actions

Difference between revisions of "Lah number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
l1100601.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/L110/L.1100060 Lah number
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A coefficient in the expansion
 
A coefficient in the expansion
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100601.png" /></td> </tr></table>
+
$$
 +
( - x ) ^ {( n ) } = \sum _ {k = 0 } ^ { n }  L _ {n,k }  x ^ {( k ) } ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100602.png" /></td> </tr></table>
+
$$
 +
x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) , \quad k \geq  1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100603.png" /></td> </tr></table>
+
$$
 +
x ^ {( 0 ) } = 1,
 +
$$
  
 
are the falling factorials.
 
are the falling factorials.
  
Replacing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100604.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100605.png" />, it follows that
+
Replacing $  x $
 +
by $  - x $,  
 +
it follows that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100606.png" /></td> </tr></table>
+
$$
 +
x ^ {( n ) } = \sum _ {k = 0 } ^ { n }  L _ {n,k }  ( - x ) ^ {( k ) } .
 +
$$
  
 
The Lah numbers are given explicitly by
 
The Lah numbers are given explicitly by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100607.png" /></td> </tr></table>
+
$$
 +
L _ {n,k }  = ( - 1 )  ^ {n} \left ( \begin{array}{c}
 +
{n - 1 } \\
 +
{k - 1 }
 +
\end{array}
 +
\right ) {
 +
\frac{n! }{k! }
 +
} , \quad n \geq  k \geq  1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100608.png" /></td> </tr></table>
+
$$
 +
L _ {0,0 }  = 1, \quad L _ {n,0 }  = 0,  n \geq  1,
 +
$$
  
and they are tabulated in [[#References|[a1]]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l1100609.png" />.
+
and they are tabulated in [[#References|[a1]]] for $  1 \leq  k \leq  n \leq  10 $.
  
 
The numbers satisfy the [[Recurrence relation|recurrence relation]]
 
The numbers satisfy the [[Recurrence relation|recurrence relation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006010.png" /></td> </tr></table>
+
$$
 +
L _ {n + 1,k }  = - ( n + k ) L _ {n,k }  - L _ {n,k - 1 }  ,
 +
$$
  
 
and have the [[Generating function|generating function]]
 
and have the [[Generating function|generating function]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006011.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm exp} } ( ut ( 1 - t ) ^ {- 1 } ) = \sum _ {n = 0 } ^  \infty  \sum _ {k = 0 } ^ { n }  ( - 1 )  ^ {n} {
 +
\frac{L _ {n,k }  u  ^ {k} t  ^ {n} }{n! }
 +
} .
 +
$$
  
 
They are related to Stirling numbers of the first and second kinds (cf. [[Combinatorial analysis|Combinatorial analysis]]), and to Bell polynomials (cf. [[Bell polynomial|Bell polynomial]]) by
 
They are related to Stirling numbers of the first and second kinds (cf. [[Combinatorial analysis|Combinatorial analysis]]), and to Bell polynomials (cf. [[Bell polynomial|Bell polynomial]]) by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006012.png" /></td> </tr></table>
+
$$
 +
L _ {n,k }  = \sum ( - 1 )  ^ {r} s ( n,r ) S ( r,k ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006013.png" /></td> </tr></table>
+
$$
 +
=  
 +
( - 1 )  ^ {n} B _ {n,k }  ( 1!, \dots, ( n - k + 1 ) ! ) .
 +
$$
  
 
See also [[#References|[a4]]] for a connection with [[Laguerre polynomials|Laguerre polynomials]].
 
See also [[#References|[a4]]] for a connection with [[Laguerre polynomials|Laguerre polynomials]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006015.png" /> are sequences, then
+
If $  a _ {n} $
 +
and $  b _ {n} $
 +
are sequences, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110060/l11006016.png" /></td> </tr></table>
+
$$
 +
a _ {n} = \sum _ { k } L _ {n,k }  b _ {k}  \iff  b _ {n} = \sum _ { k } L _ {n,k }  a _ {k} .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Comtet,  "Advanced combinatorics" , Reidel  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I. Lah,  "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik"  ''Mitteil. Math. Statist.'' , '''7'''  (1955)  pp. 203–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Riordan,  "Combinatorial analysis" , Wiley  (1958)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Roman,  "The umbral calculus" , Acad. Press  (1984)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Comtet,  "Advanced combinatorics" , Reidel  (1974)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I. Lah,  "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik"  ''Mitteil. Math. Statist.'' , '''7'''  (1955)  pp. 203–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Riordan,  "Combinatorial analysis" , Wiley  (1958)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  S. Roman,  "The umbral calculus" , Acad. Press  (1984)</TD></TR></table>

Latest revision as of 22:15, 5 June 2020


A coefficient in the expansion

$$ ( - x ) ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } x ^ {( k ) } , $$

where

$$ x ^ {( k ) } = x ( x - 1 ) \dots ( x - k + 1 ) , \quad k \geq 1, $$

$$ x ^ {( 0 ) } = 1, $$

are the falling factorials.

Replacing $ x $ by $ - x $, it follows that

$$ x ^ {( n ) } = \sum _ {k = 0 } ^ { n } L _ {n,k } ( - x ) ^ {( k ) } . $$

The Lah numbers are given explicitly by

$$ L _ {n,k } = ( - 1 ) ^ {n} \left ( \begin{array}{c} {n - 1 } \\ {k - 1 } \end{array} \right ) { \frac{n! }{k! } } , \quad n \geq k \geq 1, $$

$$ L _ {0,0 } = 1, \quad L _ {n,0 } = 0, n \geq 1, $$

and they are tabulated in [a1] for $ 1 \leq k \leq n \leq 10 $.

The numbers satisfy the recurrence relation

$$ L _ {n + 1,k } = - ( n + k ) L _ {n,k } - L _ {n,k - 1 } , $$

and have the generating function

$$ { \mathop{\rm exp} } ( ut ( 1 - t ) ^ {- 1 } ) = \sum _ {n = 0 } ^ \infty \sum _ {k = 0 } ^ { n } ( - 1 ) ^ {n} { \frac{L _ {n,k } u ^ {k} t ^ {n} }{n! } } . $$

They are related to Stirling numbers of the first and second kinds (cf. Combinatorial analysis), and to Bell polynomials (cf. Bell polynomial) by

$$ L _ {n,k } = \sum ( - 1 ) ^ {r} s ( n,r ) S ( r,k ) = $$

$$ = ( - 1 ) ^ {n} B _ {n,k } ( 1!, \dots, ( n - k + 1 ) ! ) . $$

See also [a4] for a connection with Laguerre polynomials.

If $ a _ {n} $ and $ b _ {n} $ are sequences, then

$$ a _ {n} = \sum _ { k } L _ {n,k } b _ {k} \iff b _ {n} = \sum _ { k } L _ {n,k } a _ {k} . $$

References

[a1] L. Comtet, "Advanced combinatorics" , Reidel (1974)
[a2] I. Lah, "Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik" Mitteil. Math. Statist. , 7 (1955) pp. 203–216
[a3] J. Riordan, "Combinatorial analysis" , Wiley (1958)
[a4] S. Roman, "The umbral calculus" , Acad. Press (1984)
How to Cite This Entry:
Lah number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lah_number&oldid=12804
This article was adapted from an original article by E.K. Lloyd (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article