Difference between revisions of "Laguerre transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0573201.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/L057/L.0507320 Laguerre transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The integral transform | The integral transform | ||
− | + | $$ | |
+ | f ( n) = T \{ F ( x) \} = \ | ||
+ | \int\limits _ { 0 } ^ \infty e ^ {-} x L _ {n} ( x) F ( x) d x ,\ \ | ||
+ | n = 0, 1 \dots | ||
+ | $$ | ||
− | where | + | where $ L _ {n} ( x) $ |
+ | is the Laguerre polynomial (cf. [[Laguerre polynomials|Laguerre polynomials]]) of degree $ n $. | ||
+ | The inversion formula is | ||
− | + | $$ | |
+ | T ^ {-} 1 \{ f ( n) \} = F ( x) = \ | ||
+ | \sum _ { n= } 0 ^ \infty f ( n) L _ {n} ( x) ,\ \ | ||
+ | 0 < x < \infty , | ||
+ | $$ | ||
− | if the series converges. If | + | if the series converges. If $ F $ |
+ | is continuous, $ F ^ { \prime } $ | ||
+ | is piecewise continuous on $ [ 0 , \infty ) $ | ||
+ | and $ F ( x) = O ( e ^ {ax} ) $, | ||
+ | $ x \rightarrow \infty $, | ||
+ | $ a < 1 $, | ||
+ | then | ||
− | + | $$ | |
+ | T \left \{ | ||
+ | \frac{d F ( x) }{dx} | ||
+ | \right \} = \ | ||
+ | \sum _ { k= } 0 ^ { n } f ( k) - F ( 0) ,\ \ | ||
+ | n = 0 , 1 \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | T \left \{ x | ||
+ | \frac{d F ( x) }{dx} | ||
+ | \right \} = - ( | ||
+ | n + 1 ) f ( n + 1 ) + n f ( n) ,\ n = 0 , 1 , \dots. | ||
+ | $$ | ||
− | If | + | If $ F $ |
+ | and $ F ^ { \prime } $ | ||
+ | are continuous, $ F ^ { \prime\prime } $ | ||
+ | is piecewise continuous on $ [ 0 , \infty ) $ | ||
+ | and $ | F ( x) | + | F ^ { \prime } ( x) | = O ( e ^ {ax} ) $, | ||
+ | $ x \rightarrow \infty $, | ||
+ | $ a < 1 $, | ||
+ | then | ||
− | + | $$ | |
+ | T \left \{ e ^ {x} | ||
+ | \frac{d}{dx} | ||
− | + | \left [ x e ^ {-} x | |
− | + | \frac{d F ( x) }{dx} | |
+ | \right ] \right \} = - | ||
+ | n f ( n) ,\ n = 0 , 1 , . . .. | ||
+ | $$ | ||
− | + | If $ F $ | |
+ | is piecewise continuous on $ [ 0 , \infty ) $ | ||
+ | and $ F ( x) = O ( e ^ {ax} ) $, | ||
+ | $ x \rightarrow \infty $, | ||
+ | $ a < 1 $, | ||
+ | then for | ||
− | + | $$ | |
+ | G ( x) = \int\limits _ { 0 } ^ { x } F ( t) d t , | ||
+ | $$ | ||
− | + | $$ | |
+ | g ( n) = T \left \{ \int\limits _ { 0 } ^ { x } F ( t) d t \right \} | ||
+ | = f ( n) - f ( n - 1 ) ,\ n = 1 , 2 \dots | ||
+ | $$ | ||
− | + | and for $ n = 0 $, | |
− | + | $$ | |
+ | g ( 0) = f ( 0) . | ||
+ | $$ | ||
− | + | Suppose that $ F $ | |
+ | and $ G $ | ||
+ | are piecewise continuous on $ [ 0 , \infty ) $ | ||
+ | and that | ||
+ | |||
+ | $$ | ||
+ | | F ( x) | + | G ( x) | = O ( e ^ {ax} ) ,\ \ | ||
+ | x \rightarrow \infty ,\ a < | ||
+ | \frac{1}{2} | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | T \{ F \} = f ( n) ,\ T \{ G \} = g ( n) . | ||
+ | $$ | ||
Then | Then | ||
− | + | $$ | |
+ | T ^ {-} 1 \{ f ( n) g ( n) \} = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
− | + | \frac{1} \pi | |
+ | \int\limits _ { 0 } ^ \infty e ^ {-} t F ( t) \int\limits | ||
+ | _ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta | ||
+ | } \cos ( \sqrt {xt } \sin \theta ) \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | G ( x + t - 2 \sqrt {xt } \cos \theta ) d \theta d t . | ||
+ | $$ | ||
The generalized Laguerre transform is | The generalized Laguerre transform is | ||
− | + | $$ | |
+ | f _ \alpha ( n) = T _ \alpha \{ F ( x) \} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \int\limits _ { 0 } ^ \infty e ^ {-} x x ^ \alpha L _ {n} ^ \alpha ( x) F ( x) d x ,\ n = 0 , 1 \dots | ||
+ | $$ | ||
− | where | + | where $ L _ {n} ^ \alpha ( x) $ |
+ | is the generalized Laguerre polynomial (see [[#References|[4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. McCully, "The Laguerre transform" ''SIAM Rev.'' , '''2''' : 3 (1960) pp. 185–191</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Debnath, "On Laguerre transform" ''Bull. Calcutta Math. Soc.'' , '''52''' : 2 (1960) pp. 69–77</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–74 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. McCully, "The Laguerre transform" ''SIAM Rev.'' , '''2''' : 3 (1960) pp. 185–191</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Debnath, "On Laguerre transform" ''Bull. Calcutta Math. Soc.'' , '''52''' : 2 (1960) pp. 69–77</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–74 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> |
Revision as of 22:15, 5 June 2020
The integral transform
$$ f ( n) = T \{ F ( x) \} = \ \int\limits _ { 0 } ^ \infty e ^ {-} x L _ {n} ( x) F ( x) d x ,\ \ n = 0, 1 \dots $$
where $ L _ {n} ( x) $ is the Laguerre polynomial (cf. Laguerre polynomials) of degree $ n $. The inversion formula is
$$ T ^ {-} 1 \{ f ( n) \} = F ( x) = \ \sum _ { n= } 0 ^ \infty f ( n) L _ {n} ( x) ,\ \ 0 < x < \infty , $$
if the series converges. If $ F $ is continuous, $ F ^ { \prime } $ is piecewise continuous on $ [ 0 , \infty ) $ and $ F ( x) = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then
$$ T \left \{ \frac{d F ( x) }{dx} \right \} = \ \sum _ { k= } 0 ^ { n } f ( k) - F ( 0) ,\ \ n = 0 , 1 \dots $$
$$ T \left \{ x \frac{d F ( x) }{dx} \right \} = - ( n + 1 ) f ( n + 1 ) + n f ( n) ,\ n = 0 , 1 , \dots. $$
If $ F $ and $ F ^ { \prime } $ are continuous, $ F ^ { \prime\prime } $ is piecewise continuous on $ [ 0 , \infty ) $ and $ | F ( x) | + | F ^ { \prime } ( x) | = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then
$$ T \left \{ e ^ {x} \frac{d}{dx} \left [ x e ^ {-} x \frac{d F ( x) }{dx} \right ] \right \} = - n f ( n) ,\ n = 0 , 1 , . . .. $$
If $ F $ is piecewise continuous on $ [ 0 , \infty ) $ and $ F ( x) = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then for
$$ G ( x) = \int\limits _ { 0 } ^ { x } F ( t) d t , $$
$$ g ( n) = T \left \{ \int\limits _ { 0 } ^ { x } F ( t) d t \right \} = f ( n) - f ( n - 1 ) ,\ n = 1 , 2 \dots $$
and for $ n = 0 $,
$$ g ( 0) = f ( 0) . $$
Suppose that $ F $ and $ G $ are piecewise continuous on $ [ 0 , \infty ) $ and that
$$ | F ( x) | + | G ( x) | = O ( e ^ {ax} ) ,\ \ x \rightarrow \infty ,\ a < \frac{1}{2} , $$
$$ T \{ F \} = f ( n) ,\ T \{ G \} = g ( n) . $$
Then
$$ T ^ {-} 1 \{ f ( n) g ( n) \} = $$
$$ = \ \frac{1} \pi \int\limits _ { 0 } ^ \infty e ^ {-} t F ( t) \int\limits _ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta } \cos ( \sqrt {xt } \sin \theta ) \times $$
$$ \times G ( x + t - 2 \sqrt {xt } \cos \theta ) d \theta d t . $$
The generalized Laguerre transform is
$$ f _ \alpha ( n) = T _ \alpha \{ F ( x) \} = $$
$$ = \ \int\limits _ { 0 } ^ \infty e ^ {-} x x ^ \alpha L _ {n} ^ \alpha ( x) F ( x) d x ,\ n = 0 , 1 \dots $$
where $ L _ {n} ^ \alpha ( x) $ is the generalized Laguerre polynomial (see [4]).
References
[1] | A.G. Zemanian, "Generalized integral transformations" , Interscience (1968) |
[2] | J. McCully, "The Laguerre transform" SIAM Rev. , 2 : 3 (1960) pp. 185–191 |
[3] | L. Debnath, "On Laguerre transform" Bull. Calcutta Math. Soc. , 52 : 2 (1960) pp. 69–77 |
[4] | Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–74 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Laguerre transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laguerre_transform&oldid=13724