Namespaces
Variants
Actions

Difference between revisions of "Laguerre polynomials"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
l0573101.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/L057/L.0507310 Laguerre polynomials,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Chebyshev–Laguerre polynomials''
 
''Chebyshev–Laguerre polynomials''
  
Polynomials that are orthogonal on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573101.png" /> with weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573102.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573103.png" />. The standardized Laguerre polynomials are defined by the formula
+
Polynomials that are orthogonal on the interval $  ( 0 , \infty ) $
 +
with weight function $  \phi ( x) = x  ^  \alpha  e  ^ {-} x $,  
 +
where $  \alpha > - 1 $.  
 +
The standardized Laguerre polynomials are defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573104.png" /></td> </tr></table>
+
$$
 +
L _ {n}  ^  \alpha  ( x)  = \
 +
 
 +
\frac{x ^ {- \alpha } e  ^ {x} }{n!}
 +
 
 +
\frac{d  ^ {n} }{dx  ^ {n} }
 +
( x ^ {\alpha + n } e  ^ {-} x ) ,\ \
 +
n = 0 , 1 , .  . . .
 +
$$
  
 
Their representation by means of the [[Gamma-function|gamma-function]] is
 
Their representation by means of the [[Gamma-function|gamma-function]] is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573105.png" /></td> </tr></table>
+
$$
 +
L _ {n}  ^  \alpha  ( x)  = \
 +
\sum _ { k= } 0 ^ { n }
 +
 
 +
\frac{\Gamma ( \alpha + n + 1 ) }{\Gamma ( \alpha + k + 1 ) }
 +
 
 +
\frac{( - x )  ^ {k} }{k ! ( n - k ) ! }
 +
.
 +
$$
  
 
In applications the most important formulas are:
 
In applications the most important formulas are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573106.png" /></td> </tr></table>
+
$$
 +
( n + 1 ) L _ {n+} 1  ^  \alpha  ( x)  = \
 +
( \alpha + 2n + 1 - x ) L _ {n}  ^  \alpha  ( x)
 +
- ( \alpha + n ) L _ {n-} 1  ^  \alpha  ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573107.png" /></td> </tr></table>
+
$$
 +
x L _ {n-} 1 ^ {\alpha + 1 } ( x)  = ( n + \alpha
 +
) L _ {n-} 1  ^  \alpha  ( x) - n L _ {n}  ^  \alpha  ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573108.png" /></td> </tr></table>
+
$$
 +
( L _ {n}  ^  \alpha  ( x) )  ^  \prime  = - L _ {n-} 1 ^ {\alpha + 1 } ( x) .
 +
$$
  
The polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l0573109.png" /> satisfies the differential equation (Laguerre equation)
+
The polynomial $  L _ {n}  ^  \alpha  ( x) $
 +
satisfies the differential equation (Laguerre equation)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731010.png" /></td> </tr></table>
+
$$
 +
x y  ^ {\prime\prime} + ( \alpha - x + 1 ) y  ^  \prime  +
 +
n y  = 0 ,\  n = 1 , 2 , .  . . .
 +
$$
  
 
The generating function of the Laguerre polynomials has the form
 
The generating function of the Laguerre polynomials has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731011.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{e ^ {- x t / ( 1 - t ) } }{( 1 - t ) ^ {\alpha + 1 } }
 +
  = \
 +
\sum _ { n= } 0 ^  \infty 
 +
L _ {n}  ^  \alpha  ( x) t  ^ {n} .
 +
$$
  
 
The orthonormal Laguerre polynomials can be expressed in terms of the standardized polynomials as follows:
 
The orthonormal Laguerre polynomials can be expressed in terms of the standardized polynomials as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731012.png" /></td> </tr></table>
+
$$
 +
\widehat{L}  {} _ {n}  ^  \alpha  ( x)  = (- 1)  ^ {n}
 +
L _ {n}  ^  \alpha  ( x)
 +
\sqrt {
 +
\frac{\Gamma ( n + 1 ) }{\Gamma ( \alpha + n + 1 ) }
 +
} .
 +
$$
  
The set of all Laguerre polynomials is dense in the space of functions whose square is integrable with weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731013.png" /> on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731014.png" />.
+
The set of all Laguerre polynomials is dense in the space of functions whose square is integrable with weight $  \phi ( x) $
 +
on the interval $  ( 0 , \infty ) $.
  
Laguerre polynomials are most frequently used under the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731015.png" />; these were investigated by E. Laguerre [[#References|[1]]], and are denoted in this case by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731016.png" /> (in contrast to them, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731017.png" /> are sometimes known as generalized Laguerre polynomials). The first few Laguerre polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731018.png" /> have the form
+
Laguerre polynomials are most frequently used under the condition $  \alpha = 0 $;  
 +
these were investigated by E. Laguerre [[#References|[1]]], and are denoted in this case by $  L _ {n} ( x) $(
 +
in contrast to them, the $  L _ {n}  ^  \alpha  ( x) $
 +
are sometimes known as generalized Laguerre polynomials). The first few Laguerre polynomials $  L _ {n} ( x) $
 +
have the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731019.png" /></td> </tr></table>
+
$$
 +
L _ {0} ( x)  = 1 ,\  L _ {1} ( x)  = 1 - x ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731020.png" /></td> </tr></table>
+
$$
 +
L _ {2} ( x)  = 1 - 2 x +
 +
\frac{x  ^ {2} }{2}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731021.png" /></td> </tr></table>
+
$$
 +
L _ {3} ( x)  = 1 - 3 x +
 +
\frac{3 x  ^ {2} }{2}
 +
-  
 +
\frac{x  ^ {3} }{6}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731022.png" /></td> </tr></table>
+
$$
 +
L _ {4} ( x)  = 1 - 4 x + 3 x  ^ {2} -  
 +
\frac{2 x  ^ {3} }{3}
 +
+
 +
\frac{x  ^ {4} }{24}
 +
.
 +
$$
  
The Laguerre polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731023.png" /> is sometimes denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057310/l05731024.png" />.
+
The Laguerre polynomial $  L _ {n}  ^  \alpha  ( x) $
 +
is sometimes denoted by $  L _ {n} ( x ;  \alpha ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Laguerre,  "Sur le transformations des fonctions elliptiques"  ''Bull. Soc. Math. France'' , '''6'''  (1878)  pp. 72–78</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.A. Steklov,  ''Izv. Imp. Akad. Nauk.'' , '''10'''  (1916)  pp. 633–642</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Szegö,  "Orthogonal polynomials" , Amer. Math. Soc.  (1975)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.K. Suetin,  "Classical orthogonal polynomials" , Moscow  (1979)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Laguerre,  "Sur le transformations des fonctions elliptiques"  ''Bull. Soc. Math. France'' , '''6'''  (1878)  pp. 72–78</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.A. Steklov,  ''Izv. Imp. Akad. Nauk.'' , '''10'''  (1916)  pp. 633–642</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G. Szegö,  "Orthogonal polynomials" , Amer. Math. Soc.  (1975)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  P.K. Suetin,  "Classical orthogonal polynomials" , Moscow  (1979)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 22:15, 5 June 2020


Chebyshev–Laguerre polynomials

Polynomials that are orthogonal on the interval $ ( 0 , \infty ) $ with weight function $ \phi ( x) = x ^ \alpha e ^ {-} x $, where $ \alpha > - 1 $. The standardized Laguerre polynomials are defined by the formula

$$ L _ {n} ^ \alpha ( x) = \ \frac{x ^ {- \alpha } e ^ {x} }{n!} \frac{d ^ {n} }{dx ^ {n} } ( x ^ {\alpha + n } e ^ {-} x ) ,\ \ n = 0 , 1 , . . . . $$

Their representation by means of the gamma-function is

$$ L _ {n} ^ \alpha ( x) = \ \sum _ { k= } 0 ^ { n } \frac{\Gamma ( \alpha + n + 1 ) }{\Gamma ( \alpha + k + 1 ) } \frac{( - x ) ^ {k} }{k ! ( n - k ) ! } . $$

In applications the most important formulas are:

$$ ( n + 1 ) L _ {n+} 1 ^ \alpha ( x) = \ ( \alpha + 2n + 1 - x ) L _ {n} ^ \alpha ( x) - ( \alpha + n ) L _ {n-} 1 ^ \alpha ( x) , $$

$$ x L _ {n-} 1 ^ {\alpha + 1 } ( x) = ( n + \alpha ) L _ {n-} 1 ^ \alpha ( x) - n L _ {n} ^ \alpha ( x) , $$

$$ ( L _ {n} ^ \alpha ( x) ) ^ \prime = - L _ {n-} 1 ^ {\alpha + 1 } ( x) . $$

The polynomial $ L _ {n} ^ \alpha ( x) $ satisfies the differential equation (Laguerre equation)

$$ x y ^ {\prime\prime} + ( \alpha - x + 1 ) y ^ \prime + n y = 0 ,\ n = 1 , 2 , . . . . $$

The generating function of the Laguerre polynomials has the form

$$ \frac{e ^ {- x t / ( 1 - t ) } }{( 1 - t ) ^ {\alpha + 1 } } = \ \sum _ { n= } 0 ^ \infty L _ {n} ^ \alpha ( x) t ^ {n} . $$

The orthonormal Laguerre polynomials can be expressed in terms of the standardized polynomials as follows:

$$ \widehat{L} {} _ {n} ^ \alpha ( x) = (- 1) ^ {n} L _ {n} ^ \alpha ( x) \sqrt { \frac{\Gamma ( n + 1 ) }{\Gamma ( \alpha + n + 1 ) } } . $$

The set of all Laguerre polynomials is dense in the space of functions whose square is integrable with weight $ \phi ( x) $ on the interval $ ( 0 , \infty ) $.

Laguerre polynomials are most frequently used under the condition $ \alpha = 0 $; these were investigated by E. Laguerre [1], and are denoted in this case by $ L _ {n} ( x) $( in contrast to them, the $ L _ {n} ^ \alpha ( x) $ are sometimes known as generalized Laguerre polynomials). The first few Laguerre polynomials $ L _ {n} ( x) $ have the form

$$ L _ {0} ( x) = 1 ,\ L _ {1} ( x) = 1 - x , $$

$$ L _ {2} ( x) = 1 - 2 x + \frac{x ^ {2} }{2} , $$

$$ L _ {3} ( x) = 1 - 3 x + \frac{3 x ^ {2} }{2} - \frac{x ^ {3} }{6} , $$

$$ L _ {4} ( x) = 1 - 4 x + 3 x ^ {2} - \frac{2 x ^ {3} }{3} + \frac{x ^ {4} }{24} . $$

The Laguerre polynomial $ L _ {n} ^ \alpha ( x) $ is sometimes denoted by $ L _ {n} ( x ; \alpha ) $.

References

[1] E. Laguerre, "Sur le transformations des fonctions elliptiques" Bull. Soc. Math. France , 6 (1878) pp. 72–78
[2] V.A. Steklov, Izv. Imp. Akad. Nauk. , 10 (1916) pp. 633–642
[3] G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)
[4] P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1979) (In Russian)

Comments

Laguerre polynomials can be written as confluent hypergeometric functions (cf. Confluent hypergeometric function) and belong to the classical orthogonal polynomials. They have a close connection with the Heisenberg representation: as matrix elements of irreducible representations and as spherical functions on certain Gel'fand pairs (cf. Gel'fand representation) associated with the Heisenberg group. See the references given in [a1], Chapt. 1, §9.

References

[a1] G.B. Folland, "Harmonic analysis in phase space" , Princeton Univ. Press (1989)
How to Cite This Entry:
Laguerre polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laguerre_polynomials&oldid=17042
This article was adapted from an original article by P.K. Suetin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article