Difference between revisions of "Lagrange interpolation formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0571701.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/L057/L.0507170 Lagrange interpolation formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A formula for obtaining a polynomial of degree $ n $( | |
+ | the Lagrange interpolation polynomial) that interpolates a given function $ f ( x) $ | ||
+ | at nodes $ x _ {0} \dots x _ {n} $: | ||
− | + | $$ \tag{1 } | |
+ | L _ {n} ( x) = \sum _ { i= } 0 ^ { n } f ( x _ {i} ) \prod _ {j \neq i } | ||
− | + | \frac{x - x _ {j} }{x _ {i} - x _ {j} } | |
+ | . | ||
+ | $$ | ||
+ | |||
+ | When the $ x _ {i} $ | ||
+ | are equidistant, that is, $ x _ {1} - x _ {0} = \dots = x _ {n} - x _ {n-} 1 = h $, | ||
+ | using the notation $ ( x - x _ {0} ) / h = t $ | ||
+ | one can reduce (1) to the form | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | L _ {n} ( x) = L _ {n} ( x _ {0} + th ) = ( - 1 ) ^ {n} | ||
+ | \frac{t ( t- 1 ) | ||
+ | {} \dots ( t- n ) }{n!} | ||
+ | \times | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \times | ||
+ | \sum _ { i= } 0 ^ { n } ( - 1 ) ^ {i} \left ( \begin{array}{c} | ||
+ | n | ||
+ | \\ | ||
+ | i | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | \frac{f ( x _ {i} ) }{t-} | ||
+ | i . | ||
+ | $$ | ||
In the expression (2), called the Lagrange interpolation formula for equidistant nodes, the coefficients | In the expression (2), called the Lagrange interpolation formula for equidistant nodes, the coefficients | ||
− | + | $$ | |
+ | ( - 1 ) ^ {n-} i \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | i | ||
+ | \end{array} | ||
+ | \right ) | ||
− | + | \frac{t ( t- 1 ) \dots ( t- n ) }{( t- i) n! } | |
− | + | $$ | |
− | + | of the $ f ( x _ {i} ) $ | |
+ | are called the Lagrange coefficients. | ||
− | + | If $ f $ | |
+ | has a derivative of order $ n+ 1 $ | ||
+ | on the interval $ [ a , b ] $, | ||
+ | if all interpolation nodes lie in this interval and if for any point $ x \in [ a , b ] $ | ||
+ | one defines | ||
− | + | $$ | |
+ | \alpha _ {x} = \min \{ x _ {0} \dots x _ {n} , x | ||
+ | \} ,\ \beta _ {x} = \max \{ x _ {0} \dots x _ {n} , x \} , | ||
+ | $$ | ||
+ | |||
+ | then a point $ \xi \in [ \alpha _ {x} , \beta _ {x} ] $ | ||
+ | exists such that | ||
+ | |||
+ | $$ | ||
+ | f ( x) - L _ {n} ( x) = | ||
+ | \frac{f ^ { ( n+ 1 ) } ( \xi ) \omega _ {n} ( x) }{( n+ 1) ! } | ||
+ | , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \omega _ {n} ( x) = \prod _ { j= } 0 ^ { n } ( x - x _ {j} ) . | ||
+ | $$ | ||
− | If the absolute value of the derivative | + | If the absolute value of the derivative $ f ^ { ( n+ 1 ) } $ |
+ | is bounded on $ [ a , b ] $ | ||
+ | by a constant $ M $ | ||
+ | and if the interpolation nodes are chosen such that the roots of the Chebyshev polynomial of degree $ n+ 1 $ | ||
+ | are mapped into these points under a linear mapping from $ [ - 1 , 1] $ | ||
+ | onto $ [ a , b ] $, | ||
+ | then for any $ x \in [ a , b ] $ | ||
+ | one has | ||
− | + | $$ | |
+ | | f ( x) - L _ {n} ( x) | \leq M | ||
+ | \frac{( b- a ) ^ {n+} 1 }{( n+ 1 )! | ||
+ | 2 ^ {2n+} 1 } | ||
+ | . | ||
+ | $$ | ||
− | If the interpolation nodes are complex numbers | + | If the interpolation nodes are complex numbers $ z _ {0} \dots z _ {n} $ |
+ | and lie in some domain $ G $ | ||
+ | bounded by a piecewise-smooth contour $ \gamma $, | ||
+ | and if $ f $ | ||
+ | is a single-valued analytic function defined on the closure of $ G $, | ||
+ | then the Lagrange interpolation formula has the form | ||
− | + | $$ | |
+ | L _ {n} ( z) = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ \gamma | ||
+ | \frac{\omega ( \zeta ) - | ||
+ | \omega ( z) }{\omega ( \zeta ) ( \zeta - z ) } | ||
+ | f ( \zeta ) d \zeta , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | f ( z) - L _ {n} ( z) = | ||
+ | \frac{\omega ( z) }{2 \pi i } | ||
+ | \int\limits _ \gamma | ||
+ | |||
+ | \frac{f ( \zeta ) }{\omega ( \zeta ) ( z - \zeta ) } | ||
+ | d \zeta . | ||
+ | $$ | ||
The Lagrange interpolation formula for interpolation by means of trigonometric polynomials is: | The Lagrange interpolation formula for interpolation by means of trigonometric polynomials is: | ||
− | + | $$ | |
+ | T _ {n} ( x) = \sum _ { k= } 0 ^ { n } y _ {k} \prod _ {j \neq k } | ||
+ | \frac{\sin | ||
+ | ( x - x _ {j} ) / 2 }{\sin ( x _ {k} - x _ {j} ) / 2 } | ||
+ | , | ||
+ | $$ | ||
− | which is a trigonometric polynomial of order | + | which is a trigonometric polynomial of order $ n $ |
+ | having prescribed values $ y _ {0} \dots y _ {n} $ | ||
+ | at the given nodes $ x _ {0} \dots x _ {n} $. | ||
The formula was proposed by J.L. Lagrange in 1795. | The formula was proposed by J.L. Lagrange in 1795. | ||
Line 49: | Line 148: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.W. Johnson, R.D. Riess, "Numerical analysis" , Addison-Wesley (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.M. Phillips, P.J. Taylor, "Theory and applications of numerical analysis" , Acad. Press (1973)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.W. Johnson, R.D. Riess, "Numerical analysis" , Addison-Wesley (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.M. Phillips, P.J. Taylor, "Theory and applications of numerical analysis" , Acad. Press (1973)</TD></TR></table> |
Revision as of 22:15, 5 June 2020
A formula for obtaining a polynomial of degree $ n $(
the Lagrange interpolation polynomial) that interpolates a given function $ f ( x) $
at nodes $ x _ {0} \dots x _ {n} $:
$$ \tag{1 } L _ {n} ( x) = \sum _ { i= } 0 ^ { n } f ( x _ {i} ) \prod _ {j \neq i } \frac{x - x _ {j} }{x _ {i} - x _ {j} } . $$
When the $ x _ {i} $ are equidistant, that is, $ x _ {1} - x _ {0} = \dots = x _ {n} - x _ {n-} 1 = h $, using the notation $ ( x - x _ {0} ) / h = t $ one can reduce (1) to the form
$$ \tag{2 } L _ {n} ( x) = L _ {n} ( x _ {0} + th ) = ( - 1 ) ^ {n} \frac{t ( t- 1 ) {} \dots ( t- n ) }{n!} \times $$
$$ \times \sum _ { i= } 0 ^ { n } ( - 1 ) ^ {i} \left ( \begin{array}{c} n \\ i \end{array} \right ) \frac{f ( x _ {i} ) }{t-} i . $$
In the expression (2), called the Lagrange interpolation formula for equidistant nodes, the coefficients
$$ ( - 1 ) ^ {n-} i \left ( \begin{array}{c} n \\ i \end{array} \right ) \frac{t ( t- 1 ) \dots ( t- n ) }{( t- i) n! } $$
of the $ f ( x _ {i} ) $ are called the Lagrange coefficients.
If $ f $ has a derivative of order $ n+ 1 $ on the interval $ [ a , b ] $, if all interpolation nodes lie in this interval and if for any point $ x \in [ a , b ] $ one defines
$$ \alpha _ {x} = \min \{ x _ {0} \dots x _ {n} , x \} ,\ \beta _ {x} = \max \{ x _ {0} \dots x _ {n} , x \} , $$
then a point $ \xi \in [ \alpha _ {x} , \beta _ {x} ] $ exists such that
$$ f ( x) - L _ {n} ( x) = \frac{f ^ { ( n+ 1 ) } ( \xi ) \omega _ {n} ( x) }{( n+ 1) ! } , $$
where
$$ \omega _ {n} ( x) = \prod _ { j= } 0 ^ { n } ( x - x _ {j} ) . $$
If the absolute value of the derivative $ f ^ { ( n+ 1 ) } $ is bounded on $ [ a , b ] $ by a constant $ M $ and if the interpolation nodes are chosen such that the roots of the Chebyshev polynomial of degree $ n+ 1 $ are mapped into these points under a linear mapping from $ [ - 1 , 1] $ onto $ [ a , b ] $, then for any $ x \in [ a , b ] $ one has
$$ | f ( x) - L _ {n} ( x) | \leq M \frac{( b- a ) ^ {n+} 1 }{( n+ 1 )! 2 ^ {2n+} 1 } . $$
If the interpolation nodes are complex numbers $ z _ {0} \dots z _ {n} $ and lie in some domain $ G $ bounded by a piecewise-smooth contour $ \gamma $, and if $ f $ is a single-valued analytic function defined on the closure of $ G $, then the Lagrange interpolation formula has the form
$$ L _ {n} ( z) = \frac{1}{2 \pi i } \int\limits _ \gamma \frac{\omega ( \zeta ) - \omega ( z) }{\omega ( \zeta ) ( \zeta - z ) } f ( \zeta ) d \zeta , $$
where
$$ f ( z) - L _ {n} ( z) = \frac{\omega ( z) }{2 \pi i } \int\limits _ \gamma \frac{f ( \zeta ) }{\omega ( \zeta ) ( z - \zeta ) } d \zeta . $$
The Lagrange interpolation formula for interpolation by means of trigonometric polynomials is:
$$ T _ {n} ( x) = \sum _ { k= } 0 ^ { n } y _ {k} \prod _ {j \neq k } \frac{\sin ( x - x _ {j} ) / 2 }{\sin ( x _ {k} - x _ {j} ) / 2 } , $$
which is a trigonometric polynomial of order $ n $ having prescribed values $ y _ {0} \dots y _ {n} $ at the given nodes $ x _ {0} \dots x _ {n} $.
The formula was proposed by J.L. Lagrange in 1795.
References
[1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian) |
[2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
[a1] | P.J. Davis, "Interpolation and approximation" , Dover, reprint (1975) pp. 108–126 |
[a2] | L.W. Johnson, R.D. Riess, "Numerical analysis" , Addison-Wesley (1977) |
[a3] | G.M. Phillips, P.J. Taylor, "Theory and applications of numerical analysis" , Acad. Press (1973) |
Lagrange interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_interpolation_formula&oldid=17497