Namespaces
Variants
Actions

Difference between revisions of "Lagrange equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
l0571401.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/L057/L.0507140 Lagrange equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An ordinary first-order differential equation, not solved for the derivative, but linear in the independent variable and the unknown function:
 
An ordinary first-order differential equation, not solved for the derivative, but linear in the independent variable and the unknown function:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
F ( y  ^  \prime  ) x + G ( y  ^  \prime  ) y  = H ( y  ^  \prime  ) .
 +
$$
  
 
This equation is connected with the name of J.L. Lagrange (1759, see [[#References|[1]]]); it was also investigated by J. d'Alembert, hence it is sometimes called d'Alembert's equation. A special case of the Lagrange equation is the [[Clairaut equation|Clairaut equation]].
 
This equation is connected with the name of J.L. Lagrange (1759, see [[#References|[1]]]); it was also investigated by J. d'Alembert, hence it is sometimes called d'Alembert's equation. A special case of the Lagrange equation is the [[Clairaut equation|Clairaut equation]].
Line 7: Line 21:
 
Lagrange's equation is always solvable in quadratures by the method of parameter introduction (the method of differentiation). Suppose, for example, that (1) can be reduced to the form
 
Lagrange's equation is always solvable in quadratures by the method of parameter introduction (the method of differentiation). Suppose, for example, that (1) can be reduced to the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571402.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
= f ( y  ^  \prime  ) x + g ( y  ^  \prime  ) ,\ \
 +
f ( y  ^  \prime  ) \not\equiv y  ^  \prime  .
 +
$$
  
After introducing the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571403.png" /> and taking the total differential of both sides of (2) (cf. also [[Total derivative|Total derivative]]), taking into account the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571404.png" />, one arrives at the first-order linear equation
+
After introducing the parameter $  p = y  ^  \prime  $
 +
and taking the total differential of both sides of (2) (cf. also [[Total derivative|Total derivative]]), taking into account the relation $  dy = p  dx $,  
 +
one arrives at the first-order linear equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571405.png" /></td> </tr></table>
+
$$
 +
[ p - f ( p) ]
 +
\frac{dx}{dp}
 +
- f ^ { \prime } ( p) x  = g  ^  \prime  ( p) .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571406.png" /> is a solution of this equation (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571407.png" /> is an arbitrary constant), then the solution of (2) can be written in parametric form,
+
If $  x = \Phi ( p , C ) $
 +
is a solution of this equation (where $  C $
 +
is an arbitrary constant), then the solution of (2) can be written in parametric form,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571408.png" /></td> </tr></table>
+
$$
 +
= \Phi ( p , C ) ,\ \
 +
= f ( p) \Phi ( p , C ) + g ( p) .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l0571409.png" /> is an isolated root of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l05714010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057140/l05714011.png" /> is also a solution of (2); this solution can be singular (cf. [[Singular solution|Singular solution]]).
+
If $  p _ {0} $
 +
is an isolated root of the equation $  p = f ( p) $,  
 +
then $  y = f ( p _ {0} ) x + g ( p _ {0} ) $
 +
is also a solution of (2); this solution can be singular (cf. [[Singular solution|Singular solution]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.L. Lagrange,  "Sur l'intégration d'une équation différentielle"  J.A. Serret (ed.) , ''Oeuvres'' , '''1''' , G. Olms, reprint  (1973)  pp. 21–36</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.W. [V.V. Stepanov] Stepanow,  "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.L. Lagrange,  "Sur l'intégration d'une équation différentielle"  J.A. Serret (ed.) , ''Oeuvres'' , '''1''' , G. Olms, reprint  (1973)  pp. 21–36</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.W. [V.V. Stepanov] Stepanow,  "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E.L. Ince,  "Ordinary differential equations" , Dover, reprint  (1956)</TD></TR></table>

Latest revision as of 22:15, 5 June 2020


An ordinary first-order differential equation, not solved for the derivative, but linear in the independent variable and the unknown function:

$$ \tag{1 } F ( y ^ \prime ) x + G ( y ^ \prime ) y = H ( y ^ \prime ) . $$

This equation is connected with the name of J.L. Lagrange (1759, see [1]); it was also investigated by J. d'Alembert, hence it is sometimes called d'Alembert's equation. A special case of the Lagrange equation is the Clairaut equation.

Lagrange's equation is always solvable in quadratures by the method of parameter introduction (the method of differentiation). Suppose, for example, that (1) can be reduced to the form

$$ \tag{2 } y = f ( y ^ \prime ) x + g ( y ^ \prime ) ,\ \ f ( y ^ \prime ) \not\equiv y ^ \prime . $$

After introducing the parameter $ p = y ^ \prime $ and taking the total differential of both sides of (2) (cf. also Total derivative), taking into account the relation $ dy = p dx $, one arrives at the first-order linear equation

$$ [ p - f ( p) ] \frac{dx}{dp} - f ^ { \prime } ( p) x = g ^ \prime ( p) . $$

If $ x = \Phi ( p , C ) $ is a solution of this equation (where $ C $ is an arbitrary constant), then the solution of (2) can be written in parametric form,

$$ x = \Phi ( p , C ) ,\ \ y = f ( p) \Phi ( p , C ) + g ( p) . $$

If $ p _ {0} $ is an isolated root of the equation $ p = f ( p) $, then $ y = f ( p _ {0} ) x + g ( p _ {0} ) $ is also a solution of (2); this solution can be singular (cf. Singular solution).

References

[1] J.L. Lagrange, "Sur l'intégration d'une équation différentielle" J.A. Serret (ed.) , Oeuvres , 1 , G. Olms, reprint (1973) pp. 21–36
[2] W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)

Comments

References

[a1] E.L. Ince, "Ordinary differential equations" , Dover, reprint (1956)
How to Cite This Entry:
Lagrange equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_equation&oldid=13087
This article was adapted from an original article by N.Kh. Rozov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article