Difference between revisions of "Lagrange bracket"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0571301.png | ||
+ | $#A+1 = 39 n = 0 | ||
+ | $#C+1 = 39 : ~/encyclopedia/old_files/data/L057/L.0507130 Lagrange bracket, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''Lagrange brackets, with respect to variables $ u $ | ||
+ | and $ v $'' | ||
A sum of the form | A sum of the form | ||
− | + | $$ \tag{* } | |
+ | \sum _ { i= } 1 ^ { n } | ||
+ | \left ( | ||
− | + | \frac{\partial q _ {i} }{\partial u } | |
− | + | \frac{\partial p _ {i} }{\partial v } | |
+ | - | ||
− | + | \frac{\partial q _ {i} }{\partial v } | |
− | + | \frac{\partial p _ {i} }{\partial u } | |
− | + | \right ) \equiv [ u , v ] _ {p , q } , | |
+ | $$ | ||
− | the first two of which are the zero, and the last one is the unit matrix. There is a definite connection between Lagrange brackets and [[Poisson brackets|Poisson brackets]]. Namely, if the functions | + | where $ q = ( q _ {1} \dots q _ {n} ) $ |
+ | and $ p = ( p _ {1} \dots p _ {n} ) $ | ||
+ | are certain functions of $ u $ | ||
+ | and $ v $. | ||
+ | |||
+ | If $ q = ( q _ {1} \dots q _ {n} ) $ | ||
+ | and $ p = ( p _ {1} \dots p _ {n} ) $ | ||
+ | are canonical variables and $ Q = Q ( q , p ) $, | ||
+ | $ P = P ( q , p ) $ | ||
+ | are canonical transformations, then the Lagrange bracket is an invariant of this transformation: | ||
+ | |||
+ | $$ | ||
+ | [ u , v ] _ {q , p } = \ | ||
+ | [ u , v ] _ {Q , P } . | ||
+ | $$ | ||
+ | |||
+ | For this reason the indices $ q , p $ | ||
+ | on the right-hand side of (*) are often omitted. The Lagrange bracket is said to be fundamental when the variables $ u $ | ||
+ | and $ v $ | ||
+ | coincide with some pair of the $ 2n $ | ||
+ | variables $ q , p $. | ||
+ | From them one can form three matrices: | ||
+ | |||
+ | $$ | ||
+ | [ p , p ] = \ | ||
+ | \{ [ p _ {i} , p _ {j} ] \} _ {i , j = 1 } ^ {n} ,\ \ | ||
+ | [ q , q ] ,\ [ q , p ] , | ||
+ | $$ | ||
+ | |||
+ | the first two of which are the zero, and the last one is the unit matrix. There is a definite connection between Lagrange brackets and [[Poisson brackets|Poisson brackets]]. Namely, if the functions $ u _ {i} = u _ {i} ( q , p ) $, | ||
+ | $ 1 \leq i \leq n $, | ||
+ | induce a diffeomorphism $ \mathbf R ^ {2n} \rightarrow \mathbf R ^ {2n} $, | ||
+ | then the matrices formed from the elements $ [ u _ {i} , u _ {j} ] $ | ||
+ | and $ ( u _ {j} , u _ {i} ) $ | ||
+ | are inverse to each other. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.L. Lagrange, "Oeuvres" , '''6''' , Gauthier-Villars (1873)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Goldstein, "Classical mechanics" , Addison-Wesley (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.L. Lagrange, "Oeuvres" , '''6''' , Gauthier-Villars (1873)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Goldstein, "Classical mechanics" , Addison-Wesley (1957)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | If | + | If $ \psi $ |
+ | denotes the mapping: $ ( u , v) \mapsto ( q ( u , v), p ( u , v)) $, | ||
+ | then the Lagrange bracket is equal to the product of the vectors $ {\partial \psi } / {\partial u } $ | ||
+ | and $ {\partial \psi } / {\partial v } $ | ||
+ | with respect to the canonical symplectic form (cf. [[Symplectic manifold|Symplectic manifold]]) on the phase space. More generally, if $ \omega $ | ||
+ | is a symplectic form on a smooth manifold $ M $ | ||
+ | and $ \psi $ | ||
+ | is a smooth mapping from a surface $ S $ | ||
+ | to $ M $, | ||
+ | then $ \psi ^ {*} \omega $ | ||
+ | is an area form on $ S $. | ||
+ | If $ ds $ | ||
+ | is a standard area form on $ S $, | ||
+ | then the function $ \psi ^ {*} \omega /ds $ | ||
+ | on $ S $ | ||
+ | could be called the Lagrange brackets of $ \psi $. | ||
+ | See [[#References|[a1]]], Chapt. 3. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin/Cummings (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin/Cummings (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian)</TD></TR></table> |
Revision as of 22:15, 5 June 2020
Lagrange brackets, with respect to variables $ u $
and $ v $
A sum of the form
$$ \tag{* } \sum _ { i= } 1 ^ { n } \left ( \frac{\partial q _ {i} }{\partial u } \frac{\partial p _ {i} }{\partial v } - \frac{\partial q _ {i} }{\partial v } \frac{\partial p _ {i} }{\partial u } \right ) \equiv [ u , v ] _ {p , q } , $$
where $ q = ( q _ {1} \dots q _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $ are certain functions of $ u $ and $ v $.
If $ q = ( q _ {1} \dots q _ {n} ) $ and $ p = ( p _ {1} \dots p _ {n} ) $ are canonical variables and $ Q = Q ( q , p ) $, $ P = P ( q , p ) $ are canonical transformations, then the Lagrange bracket is an invariant of this transformation:
$$ [ u , v ] _ {q , p } = \ [ u , v ] _ {Q , P } . $$
For this reason the indices $ q , p $ on the right-hand side of (*) are often omitted. The Lagrange bracket is said to be fundamental when the variables $ u $ and $ v $ coincide with some pair of the $ 2n $ variables $ q , p $. From them one can form three matrices:
$$ [ p , p ] = \ \{ [ p _ {i} , p _ {j} ] \} _ {i , j = 1 } ^ {n} ,\ \ [ q , q ] ,\ [ q , p ] , $$
the first two of which are the zero, and the last one is the unit matrix. There is a definite connection between Lagrange brackets and Poisson brackets. Namely, if the functions $ u _ {i} = u _ {i} ( q , p ) $, $ 1 \leq i \leq n $, induce a diffeomorphism $ \mathbf R ^ {2n} \rightarrow \mathbf R ^ {2n} $, then the matrices formed from the elements $ [ u _ {i} , u _ {j} ] $ and $ ( u _ {j} , u _ {i} ) $ are inverse to each other.
References
[1] | J.L. Lagrange, "Oeuvres" , 6 , Gauthier-Villars (1873) |
[2] | E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944) |
[3] | A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian) |
[4] | H. Goldstein, "Classical mechanics" , Addison-Wesley (1957) |
Comments
If $ \psi $ denotes the mapping: $ ( u , v) \mapsto ( q ( u , v), p ( u , v)) $, then the Lagrange bracket is equal to the product of the vectors $ {\partial \psi } / {\partial u } $ and $ {\partial \psi } / {\partial v } $ with respect to the canonical symplectic form (cf. Symplectic manifold) on the phase space. More generally, if $ \omega $ is a symplectic form on a smooth manifold $ M $ and $ \psi $ is a smooth mapping from a surface $ S $ to $ M $, then $ \psi ^ {*} \omega $ is an area form on $ S $. If $ ds $ is a standard area form on $ S $, then the function $ \psi ^ {*} \omega /ds $ on $ S $ could be called the Lagrange brackets of $ \psi $. See [a1], Chapt. 3.
References
[a1] | R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin/Cummings (1978) |
[a2] | F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian) |
Lagrange bracket. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_bracket&oldid=12565