Difference between revisions of "Lacuna"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0570601.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/L057/L.0507060 Lacuna | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
For lacunae in function theory see e.g. [[Hadamard theorem|Hadamard theorem]] on gaps; [[Fabry theorem|Fabry theorem]] on gaps; [[Lacunary power series|Lacunary power series]]. | For lacunae in function theory see e.g. [[Hadamard theorem|Hadamard theorem]] on gaps; [[Fabry theorem|Fabry theorem]] on gaps; [[Lacunary power series|Lacunary power series]]. | ||
For lacunae in geometry see [[Group of motions|Group of motions]]; [[Lacunary space|Lacunary space]]. | For lacunae in geometry see [[Group of motions|Group of motions]]; [[Lacunary space|Lacunary space]]. | ||
− | A lacuna in the theory of partial differential equations is a subdomain | + | A lacuna in the theory of partial differential equations is a subdomain $ D $ |
+ | of the intersection of the interior of the characteristic cone of a linear hyperbolic system | ||
− | + | $$ \tag{1 } | |
− | with vertex at the point | + | \frac{\partial ^ {n _ {i} } u _ {i} }{\partial t ^ {n _ {i} } } |
+ | = \ | ||
+ | \sum _ { j= } 1 ^ { k } L _ {ij} u _ {j} ,\ 1 \leq i \leq k , | ||
+ | $$ | ||
+ | |||
+ | with vertex at the point $ ( x _ {0} , t _ {0} ) $ | ||
+ | and a plane $ t = t _ {1} $. | ||
+ | This subdomain is defined by the following property: small sufficiently smooth changes of the initial data inside $ D $ | ||
+ | do not affect the value of the solution $ u $ | ||
+ | at the point $ ( x _ {0} , t _ {0} ) $. | ||
+ | In (1) it is assumed that $ L _ {ij} $ | ||
+ | is a linear differential operator of order $ n _ {j} $ | ||
+ | and that the order of the differentiations in it with respect to $ t $ | ||
+ | does not exceed $ n _ {j} - 1 $. | ||
+ | A "change inside" means a change in some domain that together with its boundary lies in $ D $. | ||
For the [[Wave equation|wave equation]] | For the [[Wave equation|wave equation]] | ||
− | + | $$ \tag{2 } | |
+ | u _ {tt} - \sum _ { i= } 1 ^ { n } u _ {x _ {i} x _ {i} } = 0 | ||
+ | $$ | ||
− | the solution | + | the solution $ u $ |
+ | of the [[Cauchy problem|Cauchy problem]] | ||
− | + | $$ \tag{3 } | |
+ | \left . u \right | _ {t=} 0 = \phi _ {0} ,\ \left . | ||
+ | \frac{\partial u }{\partial t } | ||
+ | \right | _ {t=} 0 = \phi _ {1} $$ | ||
− | at the point | + | at the point $ ( x _ {0} , t _ {0} ) $, |
+ | $ t _ {0} > 0 $, | ||
+ | is completely determined by the values of the functions $ \phi _ {0} $ | ||
+ | and $ \phi _ {1} $ | ||
+ | on the sphere $ | y - x _ {0} | = t _ {0} $ | ||
+ | for odd $ n > 1 $ | ||
+ | and in the ball $ | y - x _ {0} | \leq t _ {0} $ | ||
+ | for even $ n $ | ||
+ | and $ n = 1 $, | ||
+ | hence the domain $ | y - x _ {|} < t _ {0} $ | ||
+ | in the plane $ t = 0 $ | ||
+ | is a lacuna for equation (2) for odd $ n > 1 $. | ||
+ | For even $ n $ | ||
+ | and for $ n = 1 $ | ||
+ | equation (2) has no lacuna. This agrees with the [[Huygens principle|Huygens principle]] for solutions of the wave equation. | ||
− | A perturbation of the initial data (3) in a small spherical neighbourhood of the point | + | A perturbation of the initial data (3) in a small spherical neighbourhood of the point $ x _ {0} $ |
+ | leads to a spherical wave with centre at this point, which for odd $ n > 1 $ | ||
+ | has outward and inward facing fronts. For the remaining values of $ n $ | ||
+ | the inward facing front of this wave is "diffused" ; this phenomenon is called diffusion of waves. Diffusion of waves is characteristic of all linear second-order hyperbolic equations if the number $ n $ | ||
+ | of space variables is even (see [[#References|[1]]]). The analogous question for $ n = 3 $ | ||
+ | was studied in [[#References|[2]]], where a class of second-order hyperbolic equations was described for which diffusion of waves is absent. The equations of this class are closely connected with the wave equation. For general hyperbolic systems (1) a relation "locally" has been found between the existence of a lacuna for the system (1) and the analogous question for the corresponding system with constant coefficients (see [[#References|[3]]]). For the latter systems necessary and sufficient conditions of algebraic character have been obtained that ensure the presence of a lacuna. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Hadamard, "Lectures on Cauchy's problem in linear partial differential equations" , Dover, reprint (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Mathisson, "Le problème de M. Hadamard rélatif à la diffusion des ondes" ''Acta Math.'' , '''71''' : 3–4 (1939) pp. 249–282</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "On the diffusion of waves and the lacunas for hyperbolic equations" ''Mat. Sb.'' , '''17''' (1945) pp. 289–370 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Hadamard, "Lectures on Cauchy's problem in linear partial differential equations" , Dover, reprint (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Mathisson, "Le problème de M. Hadamard rélatif à la diffusion des ondes" ''Acta Math.'' , '''71''' : 3–4 (1939) pp. 249–282</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.G. Petrovskii, "On the diffusion of waves and the lacunas for hyperbolic equations" ''Mat. Sb.'' , '''17''' (1945) pp. 289–370 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , '''2''' , Interscience (1965) (Translated from German)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 22:15, 5 June 2020
For lacunae in function theory see e.g. Hadamard theorem on gaps; Fabry theorem on gaps; Lacunary power series.
For lacunae in geometry see Group of motions; Lacunary space.
A lacuna in the theory of partial differential equations is a subdomain $ D $ of the intersection of the interior of the characteristic cone of a linear hyperbolic system
$$ \tag{1 } \frac{\partial ^ {n _ {i} } u _ {i} }{\partial t ^ {n _ {i} } } = \ \sum _ { j= } 1 ^ { k } L _ {ij} u _ {j} ,\ 1 \leq i \leq k , $$
with vertex at the point $ ( x _ {0} , t _ {0} ) $ and a plane $ t = t _ {1} $. This subdomain is defined by the following property: small sufficiently smooth changes of the initial data inside $ D $ do not affect the value of the solution $ u $ at the point $ ( x _ {0} , t _ {0} ) $. In (1) it is assumed that $ L _ {ij} $ is a linear differential operator of order $ n _ {j} $ and that the order of the differentiations in it with respect to $ t $ does not exceed $ n _ {j} - 1 $. A "change inside" means a change in some domain that together with its boundary lies in $ D $.
For the wave equation
$$ \tag{2 } u _ {tt} - \sum _ { i= } 1 ^ { n } u _ {x _ {i} x _ {i} } = 0 $$
the solution $ u $ of the Cauchy problem
$$ \tag{3 } \left . u \right | _ {t=} 0 = \phi _ {0} ,\ \left . \frac{\partial u }{\partial t } \right | _ {t=} 0 = \phi _ {1} $$
at the point $ ( x _ {0} , t _ {0} ) $, $ t _ {0} > 0 $, is completely determined by the values of the functions $ \phi _ {0} $ and $ \phi _ {1} $ on the sphere $ | y - x _ {0} | = t _ {0} $ for odd $ n > 1 $ and in the ball $ | y - x _ {0} | \leq t _ {0} $ for even $ n $ and $ n = 1 $, hence the domain $ | y - x _ {|} < t _ {0} $ in the plane $ t = 0 $ is a lacuna for equation (2) for odd $ n > 1 $. For even $ n $ and for $ n = 1 $ equation (2) has no lacuna. This agrees with the Huygens principle for solutions of the wave equation.
A perturbation of the initial data (3) in a small spherical neighbourhood of the point $ x _ {0} $ leads to a spherical wave with centre at this point, which for odd $ n > 1 $ has outward and inward facing fronts. For the remaining values of $ n $ the inward facing front of this wave is "diffused" ; this phenomenon is called diffusion of waves. Diffusion of waves is characteristic of all linear second-order hyperbolic equations if the number $ n $ of space variables is even (see [1]). The analogous question for $ n = 3 $ was studied in [2], where a class of second-order hyperbolic equations was described for which diffusion of waves is absent. The equations of this class are closely connected with the wave equation. For general hyperbolic systems (1) a relation "locally" has been found between the existence of a lacuna for the system (1) and the analogous question for the corresponding system with constant coefficients (see [3]). For the latter systems necessary and sufficient conditions of algebraic character have been obtained that ensure the presence of a lacuna.
References
[1] | J. Hadamard, "Lectures on Cauchy's problem in linear partial differential equations" , Dover, reprint (1952) |
[2] | M. Mathisson, "Le problème de M. Hadamard rélatif à la diffusion des ondes" Acta Math. , 71 : 3–4 (1939) pp. 249–282 |
[3] | I.G. Petrovskii, "On the diffusion of waves and the lacunas for hyperbolic equations" Mat. Sb. , 17 (1945) pp. 289–370 (In Russian) |
[4] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) |
Comments
Further research on lacunae for second-order equations was done by K.L. Stellmacher [a1], R.G. Mclenaghan [a2] and B. Ørsted [a3]. Subsequent to the work [3] of I.G. Petrovskii, deep investigations were made for the higher-order case by M.F. Atiyah, R. Bott and L. Gårding ; for variable coefficients see also [a5].
References
[a1] | K.L. Stellmacher, "Ein Beispiel einer Huyghensschen Differentialgleichung" Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. , 10 (1953) pp. 133–138 |
[a2] | R.G. Mclenaghan, "An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle" Proc. Cambridge Philos. Soc. , 65 (1969) pp. 139–155 |
[a3] | B. Ørsted, "The conformal invariance of Huygens' principle" J. Diff. Geom. , 16 (1981) pp. 1–9 |
[a4a] | M.F. Atiyah, R. Bott, L. Gårding, "Lacunas for hyperbolic differential operations with constant coefficients I" Acta Math. , 124 (1970) pp. 109–189 |
[a4b] | M.F. Atiyah, R. Bot, L. Gårding, "Lacunas for hyperbolic differential operations with constant coefficients II" Acta Math. , 131 (1973) pp. 145–206 |
[a5] | L. Gårding, "Sharp fronts of paired oscillatory integrals" Publ. Res. Inst. Math. Sci. Kyoto Univ. , 12. Suppl. (1977) pp. 53–68 |
Lacuna. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lacuna&oldid=15246