Namespaces
Variants
Actions

Difference between revisions of "Kummer transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
k0560001.png
 +
$#A+1 = 4 n = 0
 +
$#C+1 = 4 : ~/encyclopedia/old_files/data/K056/K.0506000 Kummer transformation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A transformation of series of numbers which improves the convergence; proposed by E. Kummer. Let
 
A transformation of series of numbers which improves the convergence; proposed by E. Kummer. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056000/k0560001.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^  \infty  a _ {k}  = A \ \
 +
\textrm{ and } \ \
 +
\sum _ {k = 1 } ^  \infty  b _ {k}  = B
 +
$$
  
 
be convergent series and let the limit
 
be convergent series and let the limit
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056000/k0560002.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty } 
 +
\frac{a _ {n} }{b _ {n} }
 +
  = \gamma  \neq  0
 +
$$
  
 
exist. Then
 
exist. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056000/k0560003.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^  \infty  a _ {k}  = \gamma B +
 +
\sum _ {k = 1 } ^  \infty 
 +
\left ( 1 - \gamma
 +
 
 +
\frac{b _ {k} }{a _ {k} }
  
If the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056000/k0560004.png" /> is known, the Kummer transformation may prove useful in computations, since the series on the right converges more rapidly than that on the left.
+
\right ) a _ {k} .
 +
$$
 +
 
 +
If the sum $  B $
 +
is known, the Kummer transformation may prove useful in computations, since the series on the right converges more rapidly than that on the left.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Fichtenholz,  "Differential und Integralrechnung" , '''2''' , Deutsch. Verlag Wissenschaft.  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Fichtenholz,  "Differential und Integralrechnung" , '''2''' , Deutsch. Verlag Wissenschaft.  (1964)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Infinite sequences and series" , Dover, reprint  (1956)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Infinite sequences and series" , Dover, reprint  (1956)  (Translated from German)</TD></TR></table>

Revision as of 22:15, 5 June 2020


A transformation of series of numbers which improves the convergence; proposed by E. Kummer. Let

$$ \sum _ {k = 1 } ^ \infty a _ {k} = A \ \ \textrm{ and } \ \ \sum _ {k = 1 } ^ \infty b _ {k} = B $$

be convergent series and let the limit

$$ \lim\limits _ {n \rightarrow \infty } \frac{a _ {n} }{b _ {n} } = \gamma \neq 0 $$

exist. Then

$$ \sum _ {k = 1 } ^ \infty a _ {k} = \gamma B + \sum _ {k = 1 } ^ \infty \left ( 1 - \gamma \frac{b _ {k} }{a _ {k} } \right ) a _ {k} . $$

If the sum $ B $ is known, the Kummer transformation may prove useful in computations, since the series on the right converges more rapidly than that on the left.

References

[1] G.M. Fichtenholz, "Differential und Integralrechnung" , 2 , Deutsch. Verlag Wissenschaft. (1964)

Comments

References

[a1] K. Knopp, "Infinite sequences and series" , Dover, reprint (1956) (Translated from German)
How to Cite This Entry:
Kummer transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kummer_transformation&oldid=17267
This article was adapted from an original article by V.V. Senatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article