Difference between revisions of "Kronecker theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0559101.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/K055/K.0505910 Kronecker theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Given $ a _ {i} = ( a _ {i1} \dots a _ {in} ) \in \mathbf R ^ {n} $, | |
+ | $ i = 1 \dots m $, | ||
+ | and $ b = ( b _ {1} \dots b _ {n} ) \in \mathbf R ^ {n} $; | ||
+ | then for any $ \epsilon > 0 $ | ||
+ | there exist integers $ q _ {i} $, | ||
+ | $ i = 1 \dots m $, | ||
+ | and $ p _ {j} $, | ||
+ | $ j = 1 \dots n $, | ||
+ | such that | ||
− | + | $$ | |
+ | \left | | ||
+ | \sum _ {i = 1 } ^ { m } | ||
+ | q _ {i} a _ {ij} - p _ {j} - b _ {j} \ | ||
+ | \right | < \epsilon ,\ \ | ||
+ | 1 \leq j \leq n, | ||
+ | $$ | ||
+ | |||
+ | if and only if for any $ r _ {1} \dots r _ {n} \in \mathbf Z $ | ||
+ | such that | ||
+ | |||
+ | $$ | ||
+ | \sum _ {j = 1 } ^ { n } | ||
+ | a _ {ij} r _ {j} \in \mathbf Z ,\ \ | ||
+ | i = 1 \dots m, | ||
+ | $$ | ||
the number | the number | ||
− | + | $$ | |
+ | \sum _ {j = 1 } ^ { n } b _ {j } r _ {j } | ||
+ | $$ | ||
is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [[#References|[1]]]). | is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [[#References|[1]]]). | ||
− | Kronecker's theorem is a special case of the following theorem [[#References|[2]]], which describes the closure of the subgroup of the torus | + | Kronecker's theorem is a special case of the following theorem [[#References|[2]]], which describes the closure of the subgroup of the torus $ T ^ {n} = \mathbf R ^ {n} / \mathbf Z ^ {n} $ |
+ | generated by the elements $ a _ {i} + \mathbf Z ^ {n} $, | ||
+ | $ i = 1 \dots m $: | ||
+ | The closure is precisely the set of all classes $ b + \mathbf Z ^ {n} $ | ||
+ | such that, for any numbers $ r _ {1} \dots r _ {n} \in \mathbf Z $ | ||
+ | with | ||
− | + | $$ | |
+ | \sum _ {j = 1 } ^ { n } | ||
+ | a _ {ij} r _ {j} \in \mathbf Z ,\ \ | ||
+ | i = 1 \dots n, | ||
+ | $$ | ||
one has also | one has also | ||
− | + | $$ | |
+ | \sum _ {j = 1 } ^ { n } | ||
+ | b _ {j} r _ {j} \in \mathbf Z . | ||
+ | $$ | ||
− | (Cf. [[#References|[2]]].) Under the assumptions of Kronecker's theorem, this closure is simply | + | (Cf. [[#References|[2]]].) Under the assumptions of Kronecker's theorem, this closure is simply $ T ^ {n} $. |
+ | This means that the subgroup of all elements of the form | ||
− | + | $$ | |
+ | \sum _ {i = 1 } ^ { m } | ||
+ | q _ {i} ( a _ {i} + \mathbf Z ) ^ {n} , | ||
+ | $$ | ||
− | where | + | where $ q _ {i} \in \mathbf Z $, |
+ | is dense in $ T ^ {n} $, | ||
+ | while the subgroup of vectors | ||
− | + | $$ | |
+ | \sum _ {i = 1 } ^ { m } | ||
+ | q _ {i} a _ {i} + p, | ||
+ | $$ | ||
− | where | + | where $ p \in \mathbf Z ^ {n} $, |
+ | is dense in $ \mathbf R ^ {n} $. | ||
+ | Kronecker's theorem can be derived from the [[Duality|duality]] theory for commutative topological groups (cf. [[Topological group|Topological group]]), [[#References|[3]]]. | ||
− | In the case | + | In the case $ m = 1 $, |
+ | Kronecker's theorem becomes the following proposition: A class $ \omega + \mathbf Z ^ {n} $, | ||
+ | where $ \omega = ( \omega _ {1} \dots \omega _ {n} ) \in \mathbf R ^ {n} $, | ||
+ | generates $ T ^ {n} $ | ||
+ | as a topological group if and only if the numbers $ 1, \omega _ {1} \dots \omega _ {n} $ | ||
+ | are linearly independent over the field $ \mathbf Q $ | ||
+ | of rational numbers. In particular, the torus $ T ^ {n} $ | ||
+ | as a topological group is monothetic, i.e. is generated by a single element. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Kronecker, "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , ''Werke'' , '''3''' , Chelsea, reprint (1968) pp. 47–109</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Kronecker, "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , ''Werke'' , '''3''' , Chelsea, reprint (1968) pp. 47–109</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The last statement above can be rephrased as: If | + | The last statement above can be rephrased as: If $ \omega _ {1} \dots \omega _ {n} $ |
+ | are linearly independent over $ \mathbf Q $, | ||
+ | then the set $ B= \{ ( \{ k \omega _ {1} \} \dots \{ k \omega _ {n} \} ) : k \in \mathbf Z \} $ | ||
+ | is dense in $ ( 0, 1) $. | ||
+ | Here $ \{ x \} = x - [ x] $ | ||
+ | denotes the fractional part of $ x $( | ||
+ | cf. [[Fractional part of a number|Fractional part of a number]]). In fact, the set $ B $ | ||
+ | is even uniformly distributed, cf. [[Uniform distribution|Uniform distribution]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. 23</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. 23</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957)</TD></TR></table> |
Latest revision as of 22:15, 5 June 2020
Given $ a _ {i} = ( a _ {i1} \dots a _ {in} ) \in \mathbf R ^ {n} $,
$ i = 1 \dots m $,
and $ b = ( b _ {1} \dots b _ {n} ) \in \mathbf R ^ {n} $;
then for any $ \epsilon > 0 $
there exist integers $ q _ {i} $,
$ i = 1 \dots m $,
and $ p _ {j} $,
$ j = 1 \dots n $,
such that
$$ \left | \sum _ {i = 1 } ^ { m } q _ {i} a _ {ij} - p _ {j} - b _ {j} \ \right | < \epsilon ,\ \ 1 \leq j \leq n, $$
if and only if for any $ r _ {1} \dots r _ {n} \in \mathbf Z $ such that
$$ \sum _ {j = 1 } ^ { n } a _ {ij} r _ {j} \in \mathbf Z ,\ \ i = 1 \dots m, $$
the number
$$ \sum _ {j = 1 } ^ { n } b _ {j } r _ {j } $$
is also an integer. This theorem was first proved in 1884 by L. Kronecker (see [1]).
Kronecker's theorem is a special case of the following theorem [2], which describes the closure of the subgroup of the torus $ T ^ {n} = \mathbf R ^ {n} / \mathbf Z ^ {n} $ generated by the elements $ a _ {i} + \mathbf Z ^ {n} $, $ i = 1 \dots m $: The closure is precisely the set of all classes $ b + \mathbf Z ^ {n} $ such that, for any numbers $ r _ {1} \dots r _ {n} \in \mathbf Z $ with
$$ \sum _ {j = 1 } ^ { n } a _ {ij} r _ {j} \in \mathbf Z ,\ \ i = 1 \dots n, $$
one has also
$$ \sum _ {j = 1 } ^ { n } b _ {j} r _ {j} \in \mathbf Z . $$
(Cf. [2].) Under the assumptions of Kronecker's theorem, this closure is simply $ T ^ {n} $. This means that the subgroup of all elements of the form
$$ \sum _ {i = 1 } ^ { m } q _ {i} ( a _ {i} + \mathbf Z ) ^ {n} , $$
where $ q _ {i} \in \mathbf Z $, is dense in $ T ^ {n} $, while the subgroup of vectors
$$ \sum _ {i = 1 } ^ { m } q _ {i} a _ {i} + p, $$
where $ p \in \mathbf Z ^ {n} $, is dense in $ \mathbf R ^ {n} $. Kronecker's theorem can be derived from the duality theory for commutative topological groups (cf. Topological group), [3].
In the case $ m = 1 $, Kronecker's theorem becomes the following proposition: A class $ \omega + \mathbf Z ^ {n} $, where $ \omega = ( \omega _ {1} \dots \omega _ {n} ) \in \mathbf R ^ {n} $, generates $ T ^ {n} $ as a topological group if and only if the numbers $ 1, \omega _ {1} \dots \omega _ {n} $ are linearly independent over the field $ \mathbf Q $ of rational numbers. In particular, the torus $ T ^ {n} $ as a topological group is monothetic, i.e. is generated by a single element.
References
[1] | L. Kronecker, "Näherungsweise ganzzahlige Auflösung linearer Gleichungen" , Werke , 3 , Chelsea, reprint (1968) pp. 47–109 |
[2] | N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French) |
[3] | L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) |
Comments
The last statement above can be rephrased as: If $ \omega _ {1} \dots \omega _ {n} $ are linearly independent over $ \mathbf Q $, then the set $ B= \{ ( \{ k \omega _ {1} \} \dots \{ k \omega _ {n} \} ) : k \in \mathbf Z \} $ is dense in $ ( 0, 1) $. Here $ \{ x \} = x - [ x] $ denotes the fractional part of $ x $( cf. Fractional part of a number). In fact, the set $ B $ is even uniformly distributed, cf. Uniform distribution.
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapt. 23 |
[a2] | J.W.S. Cassels, "An introduction to diophantine approximation" , Cambridge Univ. Press (1957) |
Kronecker theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker_theorem&oldid=19181