Difference between revisions of "Kronecker formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | k0558701.png | ||
| + | $#A+1 = 34 n = 0 | ||
| + | $#C+1 = 34 : ~/encyclopedia/old_files/data/K055/K.0505870 Kronecker formula | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| + | |||
| + | A formula for the algebraic sum of the values of a function on the set of roots of a system of equations; established by L. Kronecker , [[#References|[2]]]. Let $ F ^ { t } ( x ^ {1} \dots x ^ {n} ) $, | ||
| + | $ t = 0 \dots n $, | ||
| + | and $ f ( x ^ {1} \dots x ^ {n} ) $ | ||
| + | be real-valued continuously differentiable functions on $ \mathbf R ^ {n} $ | ||
| + | such that the system of equations | ||
| + | |||
| + | $$ \tag{1 } | ||
| + | F ^ { s } ( x ^ {1} \dots x ^ {n} ) = 0,\ \ | ||
| + | s = 1 \dots n, | ||
| + | $$ | ||
has a finite number of roots. Suppose that the equation | has a finite number of roots. Suppose that the equation | ||
| − | + | $$ | |
| + | F ^ { 0 } ( x ^ {1} \dots x ^ {n} ) = 0 | ||
| + | $$ | ||
| + | |||
| + | defines a closed surface $ P $ | ||
| + | not passing through the roots of the system (1), and that $ F ^ { 0 } < 0 $ | ||
| + | in the interior of $ P $. | ||
| + | If the functions $ F ^ { s } $, | ||
| + | $ s = 1 \dots n $, | ||
| + | are considered as components of a vector field on $ \mathbf R ^ {n} $, | ||
| + | then their singular points (by definition) coincide with the roots of the system (1). Let $ x _ \alpha $ | ||
| + | be some root and let $ \chi ( x _ \alpha ) $ | ||
| + | be its index as a singular point (cf. [[Singular point, index of a|Singular point, index of a]]). Then | ||
| + | |||
| + | $$ \tag{2 } | ||
| − | + | \frac{1}{K ^ {n} } | |
| − | + | \sum _ \alpha | |
| + | f ( x _ \alpha ) | ||
| + | \chi ( x _ \alpha ) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | \int\limits _ {F ^ {0} < 0 } | ||
| + | \frac \Lambda {R ^ {n} } | ||
| + | dV | ||
| + | - \int\limits _ {F ^ {0} = 0 } | ||
| + | \frac{fD}{QR ^ {n} } | ||
| + | dS | ||
| + | $$ | ||
| − | (summation over all roots), where | + | (summation over all roots), where $ K ^ {n} $ |
| + | is the surface area of the unit sphere $ S ^ {n - 1 } $, | ||
| − | + | $$ | |
| + | R = \ | ||
| + | \sqrt {\sum _ {s = 1 } ^ { n } ( F ^ { s } ) ^ {2} } ,\ \ | ||
| + | Q = \ | ||
| + | \sqrt {\sum _ {i = 1 } ^ { n } ( F _ {i} ^ { 0 } ) ^ {2} } , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \Lambda = \left | | ||
| + | \begin{array}{cccc} | ||
| + | 0 &f _ {1} &\dots &f _ {n} \\ | ||
| + | F ^ { 1 } &F _ {1} ^ { 1 } &\dots &F _ {n} ^ { 1 } \\ | ||
| + | \cdot &\cdot &\dots &\cdot \\ | ||
| + | F ^ { n } &F _ {n} ^ { 1 } &\dots &F _ {n} ^ { n } \\ | ||
| + | \end{array} | ||
| + | \right | ,\ D = \left | | ||
| + | \begin{array}{cccc} | ||
| + | F ^ { 0 } &F _ {1} ^ { 0 } &\dots &F _ {n} ^ { 0 } \\ | ||
| + | F ^ { 1 } &F _ {1} ^ { 1 } &\dots &F _ {n} ^ { 1 } \\ | ||
| + | \cdot &\cdot &\dots &\cdot \\ | ||
| + | F ^ { n } &F _ {1} ^ { n } &\dots &F _ {n} ^ { n } \\ | ||
| + | \end{array} | ||
| + | \right | , | ||
| + | $$ | ||
| − | and, if | + | and, if $ \Phi $ |
| + | is any function, $ \Phi _ {i} $ | ||
| + | denotes the derivative $ \partial \Phi / \partial x ^ {i} $. | ||
| + | Formula (2) is Kronecker's formula. | ||
| − | If | + | If $ f \equiv 1 $, |
| + | the space integral in (2) disappears, and one obtains an expression for the sum of the indices $ \chi _ {F} $ | ||
| + | of the singular points of the vector field $ \{ F ^ { s } \} $ | ||
| + | in the interior of the surface $ P $, | ||
| + | i.e. an expression for the degree of the mapping from the surface $ P $ | ||
| + | into the sphere $ S ^ {n - 1 } $ | ||
| + | obtained by restricting the mapping $ {\widetilde{F} } {} ^ { s } = F ^ { s } /R $, | ||
| + | $ s = 1 \dots n $, | ||
| + | to $ P $. | ||
| + | Under certain additional assumptions, $ \chi _ {F} $ | ||
| + | is equal to the so-called Kronecker characteristic of the system of functions $ F ^ {0} , F ^ { 1 } \dots F ^ { n } $( | ||
| + | see [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Erster Abhandlung" ''Monatsberichte'' (1869) pp. 159–193</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Zweite Abhandlung" ''Monatsberichte'' (1869) pp. 688–698</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Kronecker, "Ueber Sturm'sche Funktionen" ''Monatsberichte'' (1878) pp. 95–121</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chetaev, "Stability of motion. Studies in analytical mechanics" , Moscow (1946) (In Russian)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''7''' (1881) pp. 375–422</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''8''' (1882) pp. 251–296</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''1''' (1885) pp. 167–244</TD></TR><TR><TD valign="top">[4d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''2''' (1886) pp. 151–217</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Erster Abhandlung" ''Monatsberichte'' (1869) pp. 159–193</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Zweite Abhandlung" ''Monatsberichte'' (1869) pp. 688–698</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Kronecker, "Ueber Sturm'sche Funktionen" ''Monatsberichte'' (1878) pp. 95–121</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. Chetaev, "Stability of motion. Studies in analytical mechanics" , Moscow (1946) (In Russian)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''7''' (1881) pp. 375–422</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''8''' (1882) pp. 251–296</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''1''' (1885) pp. 167–244</TD></TR><TR><TD valign="top">[4d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''2''' (1886) pp. 151–217</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 22:15, 5 June 2020
A formula for the algebraic sum of the values of a function on the set of roots of a system of equations; established by L. Kronecker , [2]. Let $ F ^ { t } ( x ^ {1} \dots x ^ {n} ) $,
$ t = 0 \dots n $,
and $ f ( x ^ {1} \dots x ^ {n} ) $
be real-valued continuously differentiable functions on $ \mathbf R ^ {n} $
such that the system of equations
$$ \tag{1 } F ^ { s } ( x ^ {1} \dots x ^ {n} ) = 0,\ \ s = 1 \dots n, $$
has a finite number of roots. Suppose that the equation
$$ F ^ { 0 } ( x ^ {1} \dots x ^ {n} ) = 0 $$
defines a closed surface $ P $ not passing through the roots of the system (1), and that $ F ^ { 0 } < 0 $ in the interior of $ P $. If the functions $ F ^ { s } $, $ s = 1 \dots n $, are considered as components of a vector field on $ \mathbf R ^ {n} $, then their singular points (by definition) coincide with the roots of the system (1). Let $ x _ \alpha $ be some root and let $ \chi ( x _ \alpha ) $ be its index as a singular point (cf. Singular point, index of a). Then
$$ \tag{2 } \frac{1}{K ^ {n} } \sum _ \alpha f ( x _ \alpha ) \chi ( x _ \alpha ) = $$
$$ = \ \int\limits _ {F ^ {0} < 0 } \frac \Lambda {R ^ {n} } dV - \int\limits _ {F ^ {0} = 0 } \frac{fD}{QR ^ {n} } dS $$
(summation over all roots), where $ K ^ {n} $ is the surface area of the unit sphere $ S ^ {n - 1 } $,
$$ R = \ \sqrt {\sum _ {s = 1 } ^ { n } ( F ^ { s } ) ^ {2} } ,\ \ Q = \ \sqrt {\sum _ {i = 1 } ^ { n } ( F _ {i} ^ { 0 } ) ^ {2} } , $$
$$ \Lambda = \left | \begin{array}{cccc} 0 &f _ {1} &\dots &f _ {n} \\ F ^ { 1 } &F _ {1} ^ { 1 } &\dots &F _ {n} ^ { 1 } \\ \cdot &\cdot &\dots &\cdot \\ F ^ { n } &F _ {n} ^ { 1 } &\dots &F _ {n} ^ { n } \\ \end{array} \right | ,\ D = \left | \begin{array}{cccc} F ^ { 0 } &F _ {1} ^ { 0 } &\dots &F _ {n} ^ { 0 } \\ F ^ { 1 } &F _ {1} ^ { 1 } &\dots &F _ {n} ^ { 1 } \\ \cdot &\cdot &\dots &\cdot \\ F ^ { n } &F _ {1} ^ { n } &\dots &F _ {n} ^ { n } \\ \end{array} \right | , $$
and, if $ \Phi $ is any function, $ \Phi _ {i} $ denotes the derivative $ \partial \Phi / \partial x ^ {i} $. Formula (2) is Kronecker's formula.
If $ f \equiv 1 $, the space integral in (2) disappears, and one obtains an expression for the sum of the indices $ \chi _ {F} $ of the singular points of the vector field $ \{ F ^ { s } \} $ in the interior of the surface $ P $, i.e. an expression for the degree of the mapping from the surface $ P $ into the sphere $ S ^ {n - 1 } $ obtained by restricting the mapping $ {\widetilde{F} } {} ^ { s } = F ^ { s } /R $, $ s = 1 \dots n $, to $ P $. Under certain additional assumptions, $ \chi _ {F} $ is equal to the so-called Kronecker characteristic of the system of functions $ F ^ {0} , F ^ { 1 } \dots F ^ { n } $( see [3]).
References
| [1a] | L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Erster Abhandlung" Monatsberichte (1869) pp. 159–193 |
| [1b] | L. Kronecker, "Ueber Systeme von Funktionen mehrer Variablen. Zweite Abhandlung" Monatsberichte (1869) pp. 688–698 |
| [2] | L. Kronecker, "Ueber Sturm'sche Funktionen" Monatsberichte (1878) pp. 95–121 |
| [3] | N.G. Chetaev, "Stability of motion. Studies in analytical mechanics" , Moscow (1946) (In Russian) |
| [4a] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 7 (1881) pp. 375–422 |
| [4b] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 8 (1882) pp. 251–296 |
| [4c] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 1 (1885) pp. 167–244 |
| [4d] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 2 (1886) pp. 151–217 |
Comments
Kronecker's characteristic of a system of functions is the origin of the notion of the Degree of a mapping. Cf. [a1] for historical remarks.
References
| [a1] | M.W. Hirsch, "Differential topology" , Springer (1976) pp. Chapt. 5, Sect. 3 |
Kronecker formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker_formula&oldid=17888