Difference between revisions of "Koebe theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | k0556601.png | ||
| + | $#A+1 = 75 n = 0 | ||
| + | $#C+1 = 75 : ~/encyclopedia/old_files/data/K055/K.0505660 Koebe theorem | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | where < | + | Koebe's covering theorem: There exist an absolute constant $ K > 0 $( |
| + | the Koebe constant) such that if $ f \in S $( | ||
| + | where $ S $ | ||
| + | is the class of functions $ f ( z) = z + \dots $ | ||
| + | that are regular and univalent in $ | z | < 1 $), | ||
| + | then the set of values of the function $ w = f ( z) $ | ||
| + | for $ | z | < 1 $ | ||
| + | fills out the disc $ | w | < K $, | ||
| + | where $ K $ | ||
| + | is the largest number for which this holds. L. Bieberbach (1916) proved that $ K = 1 / 4 $ | ||
| + | and that on the circle $ | w | = 1 / 4 $ | ||
| + | there exists points not belonging to the image of the disc $ | z | < 1 $ | ||
| + | under $ w = f ( z) $ | ||
| + | only when | ||
| + | |||
| + | $$ | ||
| + | f ( z) = \ | ||
| + | |||
| + | \frac{z}{( 1 + e ^ {i \alpha } z ) ^ {2} } | ||
| + | , | ||
| + | $$ | ||
| + | |||
| + | where $ \alpha $ | ||
| + | is a real number. Koebe's covering theorem is sometimes stated as follows: If a function $ w = f ( z) $, | ||
| + | $ f ( 0) = 0 $, | ||
| + | is regular and univalent in $ | z | < 1 $ | ||
| + | and maps the disc $ | z | < 1 $ | ||
| + | onto a domain not containing the point $ c $, | ||
| + | then $ | f ^ { \prime } ( 0) | \leq 4 c $. | ||
Koebe's distortion theorems. | Koebe's distortion theorems. | ||
| − | a) There exist positive numbers | + | a) There exist positive numbers $ m _ {1} ( r) $, |
| + | $ M _ {1} ( r) $, | ||
| + | depending only on $ r $, | ||
| + | such that for any $ f \in S $, | ||
| + | $ | z | = r $, | ||
| + | |||
| + | $$ | ||
| + | m _ {1} ( r) \leq | f ( z) | \leq M _ {1} ( r) . | ||
| + | $$ | ||
| + | |||
| + | b) There exists a number $ M ( r) $, | ||
| + | depending only on $ r $, | ||
| + | such that for $ f \in S $, | ||
| + | $ | z _ {1} | , | z _ {2} | \leq r $, | ||
| + | |||
| + | $$ | ||
| − | + | \frac{1}{M ( r) } | |
| + | \leq \ | ||
| + | \left | | ||
| − | + | \frac{f ^ { \prime } ( z _ {1} ) }{f ^ { \prime } ( z _ {2} ) } | |
| − | + | \right | | |
| + | \leq M ( r) . | ||
| + | $$ | ||
| − | This theorem can also be stated as follows: There exist positive numbers | + | This theorem can also be stated as follows: There exist positive numbers $ m _ {2} ( r) $, |
| + | $ M _ {2} ( r) $, | ||
| + | depending only on $ r $, | ||
| + | such that for any $ f \in S $, | ||
| + | $ | z | \leq r $, | ||
| − | + | $$ | |
| + | m _ {2} ( r) \leq | f ^ { \prime } ( z) | \leq M _ {2} ( r) . | ||
| + | $$ | ||
Bieberbach proved that the best possible bounds in Koebe's distortion theorems are: | Bieberbach proved that the best possible bounds in Koebe's distortion theorems are: | ||
| − | + | $$ | |
| + | m _ {1} ( r) = \ | ||
| + | |||
| + | \frac{r}{( 1 + r ) ^ {2} } | ||
| + | ,\ \ | ||
| + | M _ {1} ( r) = \ | ||
| − | + | \frac{r}{( 1 - r ) ^ {2} } | |
| + | , | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | m _ {2} ( r) = | ||
| + | \frac{1 - r }{( 1 + r ) ^ {3} } | ||
| + | ,\ \ | ||
| + | M _ {2} ( r) = | ||
| + | \frac{1 + r }{( 1 - r ) ^ {3} } | ||
| + | . | ||
| + | $$ | ||
Koebe's theorems on mapping finitely-connected domains onto canonical domains. | Koebe's theorems on mapping finitely-connected domains onto canonical domains. | ||
| − | a) Every | + | a) Every $ n $- |
| + | connected domain $ B $ | ||
| + | of the $ z $- | ||
| + | plane can be univalently mapped onto a circular domain (that is, onto a domain bounded by a finite number of complete non-intersecting circles; here some of the circles may degenerate to a point) of the $ \zeta $- | ||
| + | plane. There exists just one normalized mapping among these mappings taking a given point $ z = a \in B $ | ||
| + | to $ \zeta = \infty $ | ||
| + | and such that the expansion of the mapping function in a neighbourhood of $ z = a $ | ||
| + | has the form | ||
| − | + | $$ | |
| − | + | \frac{1}{z - a } | |
| − | + | + \alpha _ {1} ( z - a ) | |
| + | + \dots \ \textrm{ or } \ \ | ||
| + | z + | ||
| − | + | \frac{\alpha _ {1} }{z} | |
| + | + \dots , | ||
| + | $$ | ||
| − | according as | + | according as $ a $ |
| + | is finite or not. | ||
| + | |||
| + | b) Every $ n $- | ||
| + | connected domain $ B $ | ||
| + | of the $ z $- | ||
| + | plane with boundary continua $ K _ {1} \dots K _ {n} $ | ||
| + | can be univalently mapped onto the $ \zeta $- | ||
| + | plane with $ n $ | ||
| + | slits along arcs of logarithmic spirals with respective inclinations $ \theta _ {1} \dots \theta _ {n} $, | ||
| + | $ 0 \leq \theta _ \nu \leq \pi / 2 $, | ||
| + | $ \nu = 1 \dots n $, | ||
| + | to the radial directions, and, moreover, such that the continuum $ K _ \nu $, | ||
| + | $ \nu = 1 \dots n $, | ||
| + | is taken to the arc with inclination $ \theta _ \nu $, | ||
| + | the given points $ a , b \in B $ | ||
| + | are taken to $ 0 $ | ||
| + | and $ \infty $, | ||
| + | and the expansion of the mapping function in a neighbourhood of $ z = b $ | ||
| + | has the form | ||
| + | |||
| + | $$ | ||
| + | |||
| + | \frac{1}{z - b } | ||
| + | |||
| + | + \alpha _ {0} + \alpha _ {1} ( z - b ) + \dots \ \ | ||
| + | \textrm{ or } \ \ | ||
| + | z + \alpha _ {0} + | ||
| + | \frac{\alpha _ {1} }{z} | ||
| + | + \dots , | ||
| + | $$ | ||
| + | |||
| + | according as $ b $ | ||
| + | is finite or not. The mapping is unique. | ||
Theorems 1)–3) were established by P. Koebe (see –[[#References|[4]]]). | Theorems 1)–3) were established by P. Koebe (see –[[#References|[4]]]). | ||
| Line 43: | Line 164: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung beliebiger analytischer Kurven" ''Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl.'' , '''2''' (1907) pp. 191–210</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen mit imaginären Substitutionsgruppe" ''Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl.'' , '''4''' (1908) pp. 68–76</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven II" ''Math. Ann.'' , '''69''' (1910) pp. 1–81</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Koebe, "Abhandlung zur Theorie der konformen Abbildung IV" ''Acta Math.'' , '''41''' (1918) pp. 305–344</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P. Koebe, "Abhandlung zur Theorie der konformen Abbildung V" ''Math. Z'' , '''2''' (1918) pp. 198–236</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Intrinsic problems in the theory of univalent functions" ''Uspekhi Mat. Nauk'' , '''6''' (1939) pp. 26–89 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung beliebiger analytischer Kurven" ''Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl.'' , '''2''' (1907) pp. 191–210</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen mit imaginären Substitutionsgruppe" ''Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl.'' , '''4''' (1908) pp. 68–76</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven II" ''Math. Ann.'' , '''69''' (1910) pp. 1–81</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Koebe, "Abhandlung zur Theorie der konformen Abbildung IV" ''Acta Math.'' , '''41''' (1918) pp. 305–344</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P. Koebe, "Abhandlung zur Theorie der konformen Abbildung V" ''Math. Z'' , '''2''' (1918) pp. 198–236</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Intrinsic problems in the theory of univalent functions" ''Uspekhi Mat. Nauk'' , '''6''' (1939) pp. 26–89 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | Koebe's covering theorem is related to Bloch's theorem: There exists an absolute constant | + | Koebe's covering theorem is related to Bloch's theorem: There exists an absolute constant $ B $ |
| + | such that if $ f ( z) = z + a _ {2} z ^ {2} + \dots $ | ||
| + | is analytic in $ D = \{ {z } : {| z | < 1 } \} $, | ||
| + | then $ f ( D) $ | ||
| + | contains a disc of radius $ B $ | ||
| + | which is the one-to-one image of a subdomain of $ D $. | ||
| + | The best (largest) value of $ B $ | ||
| + | is called Bloch's constant. It is known that | ||
| − | + | $$ | |
| + | B \leq | ||
| + | \frac{\Gamma ( 1/3) \Gamma ( 11/12) }{\sqrt {1 + \sqrt 3 } \Gamma ( 1/4) } | ||
| + | , | ||
| + | $$ | ||
and equality has been conjectured. For an up-to-date discussion of these matters, see [[#References|[a1]]]. | and equality has been conjectured. For an up-to-date discussion of these matters, see [[#References|[a1]]]. | ||
Latest revision as of 22:14, 5 June 2020
Koebe's covering theorem: There exist an absolute constant $ K > 0 $(
the Koebe constant) such that if $ f \in S $(
where $ S $
is the class of functions $ f ( z) = z + \dots $
that are regular and univalent in $ | z | < 1 $),
then the set of values of the function $ w = f ( z) $
for $ | z | < 1 $
fills out the disc $ | w | < K $,
where $ K $
is the largest number for which this holds. L. Bieberbach (1916) proved that $ K = 1 / 4 $
and that on the circle $ | w | = 1 / 4 $
there exists points not belonging to the image of the disc $ | z | < 1 $
under $ w = f ( z) $
only when
$$ f ( z) = \ \frac{z}{( 1 + e ^ {i \alpha } z ) ^ {2} } , $$
where $ \alpha $ is a real number. Koebe's covering theorem is sometimes stated as follows: If a function $ w = f ( z) $, $ f ( 0) = 0 $, is regular and univalent in $ | z | < 1 $ and maps the disc $ | z | < 1 $ onto a domain not containing the point $ c $, then $ | f ^ { \prime } ( 0) | \leq 4 c $.
Koebe's distortion theorems.
a) There exist positive numbers $ m _ {1} ( r) $, $ M _ {1} ( r) $, depending only on $ r $, such that for any $ f \in S $, $ | z | = r $,
$$ m _ {1} ( r) \leq | f ( z) | \leq M _ {1} ( r) . $$
b) There exists a number $ M ( r) $, depending only on $ r $, such that for $ f \in S $, $ | z _ {1} | , | z _ {2} | \leq r $,
$$ \frac{1}{M ( r) } \leq \ \left | \frac{f ^ { \prime } ( z _ {1} ) }{f ^ { \prime } ( z _ {2} ) } \right | \leq M ( r) . $$
This theorem can also be stated as follows: There exist positive numbers $ m _ {2} ( r) $, $ M _ {2} ( r) $, depending only on $ r $, such that for any $ f \in S $, $ | z | \leq r $,
$$ m _ {2} ( r) \leq | f ^ { \prime } ( z) | \leq M _ {2} ( r) . $$
Bieberbach proved that the best possible bounds in Koebe's distortion theorems are:
$$ m _ {1} ( r) = \ \frac{r}{( 1 + r ) ^ {2} } ,\ \ M _ {1} ( r) = \ \frac{r}{( 1 - r ) ^ {2} } , $$
$$ m _ {2} ( r) = \frac{1 - r }{( 1 + r ) ^ {3} } ,\ \ M _ {2} ( r) = \frac{1 + r }{( 1 - r ) ^ {3} } . $$
Koebe's theorems on mapping finitely-connected domains onto canonical domains.
a) Every $ n $- connected domain $ B $ of the $ z $- plane can be univalently mapped onto a circular domain (that is, onto a domain bounded by a finite number of complete non-intersecting circles; here some of the circles may degenerate to a point) of the $ \zeta $- plane. There exists just one normalized mapping among these mappings taking a given point $ z = a \in B $ to $ \zeta = \infty $ and such that the expansion of the mapping function in a neighbourhood of $ z = a $ has the form
$$ \frac{1}{z - a } + \alpha _ {1} ( z - a ) + \dots \ \textrm{ or } \ \ z + \frac{\alpha _ {1} }{z} + \dots , $$
according as $ a $ is finite or not.
b) Every $ n $- connected domain $ B $ of the $ z $- plane with boundary continua $ K _ {1} \dots K _ {n} $ can be univalently mapped onto the $ \zeta $- plane with $ n $ slits along arcs of logarithmic spirals with respective inclinations $ \theta _ {1} \dots \theta _ {n} $, $ 0 \leq \theta _ \nu \leq \pi / 2 $, $ \nu = 1 \dots n $, to the radial directions, and, moreover, such that the continuum $ K _ \nu $, $ \nu = 1 \dots n $, is taken to the arc with inclination $ \theta _ \nu $, the given points $ a , b \in B $ are taken to $ 0 $ and $ \infty $, and the expansion of the mapping function in a neighbourhood of $ z = b $ has the form
$$ \frac{1}{z - b } + \alpha _ {0} + \alpha _ {1} ( z - b ) + \dots \ \ \textrm{ or } \ \ z + \alpha _ {0} + \frac{\alpha _ {1} }{z} + \dots , $$
according as $ b $ is finite or not. The mapping is unique.
Theorems 1)–3) were established by P. Koebe (see –[4]).
References
| [1a] | P. Koebe, "Ueber die Uniformisierung beliebiger analytischer Kurven" Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl. , 2 (1907) pp. 191–210 |
| [1b] | P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven durch automorphe Funktionen mit imaginären Substitutionsgruppe" Nachr. K. Ges. Wissenschaft. Göttingen Math. Phys. Kl. , 4 (1908) pp. 68–76 |
| [2] | P. Koebe, "Ueber die Uniformisierung der algebraischen Kurven II" Math. Ann. , 69 (1910) pp. 1–81 |
| [3] | P. Koebe, "Abhandlung zur Theorie der konformen Abbildung IV" Acta Math. , 41 (1918) pp. 305–344 |
| [4] | P. Koebe, "Abhandlung zur Theorie der konformen Abbildung V" Math. Z , 2 (1918) pp. 198–236 |
| [5] | G.M. Goluzin, "Intrinsic problems in the theory of univalent functions" Uspekhi Mat. Nauk , 6 (1939) pp. 26–89 (In Russian) |
| [6] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
| [7] | J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958) |
Comments
Koebe's covering theorem is related to Bloch's theorem: There exists an absolute constant $ B $ such that if $ f ( z) = z + a _ {2} z ^ {2} + \dots $ is analytic in $ D = \{ {z } : {| z | < 1 } \} $, then $ f ( D) $ contains a disc of radius $ B $ which is the one-to-one image of a subdomain of $ D $. The best (largest) value of $ B $ is called Bloch's constant. It is known that
$$ B \leq \frac{\Gamma ( 1/3) \Gamma ( 11/12) }{\sqrt {1 + \sqrt 3 } \Gamma ( 1/4) } , $$
and equality has been conjectured. For an up-to-date discussion of these matters, see [a1].
See also Landau theorems.
References
| [a1] | C.D. Minda, "Bloch constants" J. d'Anal. Math. , 41 (1982) pp. 54–84 |
| [a2] | J.B. Conway, "Functions of a complex variable" , Springer (1978) |
Koebe theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Koebe_theorem&oldid=14518