Difference between revisions of "Julia set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | j0543901.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/J054/J.0504390 Julia set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
G. Julia [[#References|[a1]]] and P. Fatou | G. Julia [[#References|[a1]]] and P. Fatou | ||
− | studied the iteration of rational mappings | + | studied the iteration of rational mappings $ f: \overline{\mathbf C}\; \rightarrow \overline{\mathbf C}\; $. |
+ | Let $ f ^ { n } $ | ||
+ | denote the $ n $- | ||
+ | fold composite of the function $ f $ | ||
+ | with itself. A point $ z \in C $ | ||
+ | is an element of the so-called Fatou set $ F ( f ) $ | ||
+ | of $ f $ | ||
+ | if there exists a neighbourhood $ U $ | ||
+ | of $ z $ | ||
+ | in $ \mathbf C $ | ||
+ | such that the family of iterates $ \{ f ^ { n } \mid _ {U} \} $ | ||
+ | is a [[Normal family|normal family]]. The Julia set $ J ( f ) $ | ||
+ | is the complement of the Fatou set. $ J ( f ) $ | ||
+ | has the following properties: 1) $ J ( f ) $ | ||
+ | is non-empty and perfect (cf. [[Perfect set|Perfect set]]); 2) $ J ( f ) $ | ||
+ | equals the closure of the set of repelling periodic points (cf. [[Periodic point|Periodic point]]); 3) $ J ( f ) $ | ||
+ | is either totally disconnected (cf. [[Totally-disconnected space|Totally-disconnected space]]) or connected by Jordan arcs or coincides with $ \mathbf C $; | ||
+ | 4) $ J ( f ) $ | ||
+ | is invariant with respect to $ f $ | ||
+ | and $ f ^ { - 1 } $; | ||
+ | and 5) $ J ( f ) $ | ||
+ | is an attractor (cf. [[Strange attractor|Strange attractor]]) of the inverse iterated mapping $ f ^ { - n } $. | ||
+ | In almost-all cases $ J( f ) $ | ||
+ | has a [[Fractal dimension|fractal dimension]] and may be termed a fractal (cf. [[Fractals|Fractals]]). D. Sullivan has given an exhaustive classification of the elements of the Fatou set with respect to their dynamics. Every component of $ F ( f ) $ | ||
+ | is either periodic or pre-periodic. Let $ D $ | ||
+ | be such a periodic domain and let $ n $ | ||
+ | be its period. Writing $ g = f ^ { n } $ | ||
+ | one has the following five kinds of dynamics: | ||
− | a) | + | a) $ D $ |
+ | is an attracting domain; $ D $ | ||
+ | contains an attracting periodic point $ p $ | ||
+ | with $ 0 < | g ^ \prime ( p) | < 1 $. | ||
− | b) | + | b) $ D $ |
+ | is a super-attractive domain; $ D $ | ||
+ | contains a periodic point $ p $ | ||
+ | which is also a critical point, i.e. $ g ^ \prime ( p) = 0 $. | ||
− | c) | + | c) $ D $ |
+ | is a parabolic domain; its boundary contains a periodic point $ p $ | ||
+ | with $ g ^ \prime ( p) = 1 $. | ||
− | d) | + | d) $ D $ |
+ | is a Siegel disc (cf. [[Siegel domain|Siegel domain]]); $ D $ | ||
+ | is simply connected and $ g \mid _ {D} $ | ||
+ | is analytically equivalent to a rotation. | ||
− | e) | + | e) $ D $ |
+ | is a Herman ring: $ D $ | ||
+ | is conformally equivalent to an annulus and $ g \mid _ {D} $ | ||
+ | is analytically conjugate to a rigid rotation of an annulus. | ||
− | Here a pre-periodic point is a point some iterate of which is periodic. A fixed point | + | Here a pre-periodic point is a point some iterate of which is periodic. A fixed point $ z _ {0} $ |
+ | of $ f $ | ||
+ | is super-attractive if $ f ^ { \prime } ( z _ {0} ) = 0 $. | ||
+ | (Recall that if $ z _ {0} $ | ||
+ | is a fixed point, then $ z _ {0} $ | ||
+ | is attractive if $ | f ^ { \prime } ( z _ {0} ) | < 1 $ | ||
+ | and repelling if $ | f ^ { \prime } ( z _ {0} ) | > 1 $.) | ||
The existence of Herman rings has been proved, but they have never yet (1989) been observed. | The existence of Herman rings has been proved, but they have never yet (1989) been observed. | ||
− | The best studied case is the quadratic mapping | + | The best studied case is the quadratic mapping $ f = z ^ {2} + c $. |
+ | All phenomena are present there, with the exception of a Herman ring. All $ c $ | ||
+ | for which $ J ( f ) $ | ||
+ | is connected form the Mandelbrot set, the bifurcation diagram of $ J ( f ) $ | ||
+ | in the parameter space of $ c $. | ||
+ | See also [[Chaos|Chaos]]; [[Routes to chaos|Routes to chaos]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Julia, "Mémoire sur l'iteration des fonctions rationnelles" ''J. de Math.'' , '''8''' (1918) pp. 47–245</TD></TR><TR><TD valign="top">[a2a]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''47''' (1919) pp. 161–271</TD></TR><TR><TD valign="top">[a2b]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''48''' (1920) pp. 33–94</TD></TR><TR><TD valign="top">[a2c]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''48''' (1920) pp. 208–314</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Brolin, "Invariant sets under iteration of rational functions" ''Ark. Mat.'' , '''6''' (1965) pp. 103–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Blanchard, "Complex analytic dynamics" ''Bull. Amer. Math. Soc.'' , '''11''' (1984) pp. 84–141</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.L. Devaney, "An introduction to chaotic dynamical systems" , Benjamin/Cummings (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H.-O. Peitgen, P.H. Richter, "The beauty of fractals" , Springer (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Julia, "Mémoire sur l'iteration des fonctions rationnelles" ''J. de Math.'' , '''8''' (1918) pp. 47–245</TD></TR><TR><TD valign="top">[a2a]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''47''' (1919) pp. 161–271</TD></TR><TR><TD valign="top">[a2b]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''48''' (1920) pp. 33–94</TD></TR><TR><TD valign="top">[a2c]</TD> <TD valign="top"> P. Fatou, "Sur les équations fonctionnelles" ''Bull. Soc. Math. France'' , '''48''' (1920) pp. 208–314</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Brolin, "Invariant sets under iteration of rational functions" ''Ark. Mat.'' , '''6''' (1965) pp. 103–144</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Blanchard, "Complex analytic dynamics" ''Bull. Amer. Math. Soc.'' , '''11''' (1984) pp. 84–141</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R.L. Devaney, "An introduction to chaotic dynamical systems" , Benjamin/Cummings (1986)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H.-O. Peitgen, P.H. Richter, "The beauty of fractals" , Springer (1986)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
G. Julia [a1] and P. Fatou
studied the iteration of rational mappings $ f: \overline{\mathbf C}\; \rightarrow \overline{\mathbf C}\; $. Let $ f ^ { n } $ denote the $ n $- fold composite of the function $ f $ with itself. A point $ z \in C $ is an element of the so-called Fatou set $ F ( f ) $ of $ f $ if there exists a neighbourhood $ U $ of $ z $ in $ \mathbf C $ such that the family of iterates $ \{ f ^ { n } \mid _ {U} \} $ is a normal family. The Julia set $ J ( f ) $ is the complement of the Fatou set. $ J ( f ) $ has the following properties: 1) $ J ( f ) $ is non-empty and perfect (cf. Perfect set); 2) $ J ( f ) $ equals the closure of the set of repelling periodic points (cf. Periodic point); 3) $ J ( f ) $ is either totally disconnected (cf. Totally-disconnected space) or connected by Jordan arcs or coincides with $ \mathbf C $; 4) $ J ( f ) $ is invariant with respect to $ f $ and $ f ^ { - 1 } $; and 5) $ J ( f ) $ is an attractor (cf. Strange attractor) of the inverse iterated mapping $ f ^ { - n } $. In almost-all cases $ J( f ) $ has a fractal dimension and may be termed a fractal (cf. Fractals). D. Sullivan has given an exhaustive classification of the elements of the Fatou set with respect to their dynamics. Every component of $ F ( f ) $ is either periodic or pre-periodic. Let $ D $ be such a periodic domain and let $ n $ be its period. Writing $ g = f ^ { n } $ one has the following five kinds of dynamics:
a) $ D $ is an attracting domain; $ D $ contains an attracting periodic point $ p $ with $ 0 < | g ^ \prime ( p) | < 1 $.
b) $ D $ is a super-attractive domain; $ D $ contains a periodic point $ p $ which is also a critical point, i.e. $ g ^ \prime ( p) = 0 $.
c) $ D $ is a parabolic domain; its boundary contains a periodic point $ p $ with $ g ^ \prime ( p) = 1 $.
d) $ D $ is a Siegel disc (cf. Siegel domain); $ D $ is simply connected and $ g \mid _ {D} $ is analytically equivalent to a rotation.
e) $ D $ is a Herman ring: $ D $ is conformally equivalent to an annulus and $ g \mid _ {D} $ is analytically conjugate to a rigid rotation of an annulus.
Here a pre-periodic point is a point some iterate of which is periodic. A fixed point $ z _ {0} $ of $ f $ is super-attractive if $ f ^ { \prime } ( z _ {0} ) = 0 $. (Recall that if $ z _ {0} $ is a fixed point, then $ z _ {0} $ is attractive if $ | f ^ { \prime } ( z _ {0} ) | < 1 $ and repelling if $ | f ^ { \prime } ( z _ {0} ) | > 1 $.)
The existence of Herman rings has been proved, but they have never yet (1989) been observed.
The best studied case is the quadratic mapping $ f = z ^ {2} + c $. All phenomena are present there, with the exception of a Herman ring. All $ c $ for which $ J ( f ) $ is connected form the Mandelbrot set, the bifurcation diagram of $ J ( f ) $ in the parameter space of $ c $. See also Chaos; Routes to chaos.
References
[a1] | G. Julia, "Mémoire sur l'iteration des fonctions rationnelles" J. de Math. , 8 (1918) pp. 47–245 |
[a2a] | P. Fatou, "Sur les équations fonctionnelles" Bull. Soc. Math. France , 47 (1919) pp. 161–271 |
[a2b] | P. Fatou, "Sur les équations fonctionnelles" Bull. Soc. Math. France , 48 (1920) pp. 33–94 |
[a2c] | P. Fatou, "Sur les équations fonctionnelles" Bull. Soc. Math. France , 48 (1920) pp. 208–314 |
[a3] | H. Brolin, "Invariant sets under iteration of rational functions" Ark. Mat. , 6 (1965) pp. 103–144 |
[a4] | P. Blanchard, "Complex analytic dynamics" Bull. Amer. Math. Soc. , 11 (1984) pp. 84–141 |
[a5] | R.L. Devaney, "An introduction to chaotic dynamical systems" , Benjamin/Cummings (1986) |
[a6] | H.-O. Peitgen, P.H. Richter, "The beauty of fractals" , Springer (1986) |
Julia set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Julia_set&oldid=14959