Difference between revisions of "Jacobi transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | j0541301.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/J054/J.0504130 Jacobi transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The integral transforms | The integral transforms | ||
− | + | $$ | |
+ | J \{ F ( x) \} = \ | ||
+ | f ^ { ( \alpha , \beta ) } ( n) = \ | ||
+ | \int\limits _ { - } 1 ^ { 1 } | ||
+ | P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) dx, | ||
+ | $$ | ||
− | + | $$ | |
+ | n = 0, 1 \dots | ||
+ | $$ | ||
− | where the | + | where the $ P _ {n} ^ {( \alpha , \beta ) } ( x) $ |
+ | are the [[Jacobi polynomials|Jacobi polynomials]] of degree $ n $, | ||
+ | and $ \alpha > - 1 $ | ||
+ | and $ \beta > - 1 $ | ||
+ | are real numbers. The inversion formula has the form | ||
− | + | $$ | |
+ | F ( x) = \ | ||
+ | \sum _ {n = 0 } ^ \infty | ||
− | + | \frac{1}{\delta _ {n} } | |
− | < | + | ( 1 - x) ^ \alpha |
+ | ( 1 + x) ^ \beta | ||
+ | P _ {n} ^ {( \alpha , \beta ) } ( x) | ||
+ | f ^ { ( \alpha , \beta ) } ( n), | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | - 1 < x < 1, | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \delta _ {n} = | ||
+ | \frac{2 ^ {\alpha + \beta + 1 } \Gamma | ||
+ | ( \alpha + n + 1) \Gamma ( \beta + n + 1) }{n! ( \alpha | ||
+ | + \beta + 2n + 1) \Gamma ( \alpha + \beta + n + 1) } | ||
+ | , | ||
+ | $$ | ||
provided the series converges. | provided the series converges. | ||
Line 17: | Line 58: | ||
The Jacobi transform reduces the operation | The Jacobi transform reduces the operation | ||
− | + | $$ | |
+ | T [ F ( x)] = \ | ||
+ | { | ||
+ | \frac{d}{dx} | ||
+ | } | ||
+ | \left \{ | ||
+ | ( 1 - x ^ {2} ) | ||
+ | |||
+ | \frac{dF }{dx } | ||
+ | + | ||
+ | [( \alpha - \beta ) + ( \alpha + \beta ) x] | ||
+ | |||
+ | \frac{dF }{dx } | ||
+ | |||
+ | \right \} | ||
+ | $$ | ||
to an algebraic one by the formula | to an algebraic one by the formula | ||
− | + | $$ | |
+ | J \{ T [ F ( x)] \} = - | ||
+ | ( n + 1) ( n + \alpha + \beta ) | ||
+ | f ^ { ( \alpha , \beta ) } ( n) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \left . \{ [( \alpha - \beta ) + ( \alpha + | ||
+ | \beta ) x] P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) \} \right | _ {-} 1 ^ {1} . | ||
+ | $$ | ||
− | When | + | When $ \alpha = \beta = 0 $ |
+ | the Jacobi transform is the [[Legendre transform|Legendre transform]]; for $ \alpha = \beta = \nu - 1/2 $ | ||
+ | it is the [[Gegenbauer transform|Gegenbauer transform]]. Jacobi transforms are used in solving differential equations containing the operator $ T $. | ||
+ | The Jacobi transform has also been defined for a special class of generalized functions. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.J. Scott, "Jacobi transforms" ''Quart. J. Math.'' , '''4''' : 13 (1953) pp. 36–40</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prundnikov, "Integral transforms" ''Progress in Math.'' (1969) pp. 1–85 ''Itogi Nauk. Mat. Anal. 1966'' (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.J. Scott, "Jacobi transforms" ''Quart. J. Math.'' , '''4''' : 13 (1953) pp. 36–40</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prundnikov, "Integral transforms" ''Progress in Math.'' (1969) pp. 1–85 ''Itogi Nauk. Mat. Anal. 1966'' (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
See (the editorial comments to) [[Gegenbauer transform|Gegenbauer transform]]. Usually the Jacobi transform is written as | See (the editorial comments to) [[Gegenbauer transform|Gegenbauer transform]]. Usually the Jacobi transform is written as | ||
− | + | $$ | |
+ | \int\limits _ { - } 1 ^ { 1 } F ( x) | ||
+ | P _ {n} ^ {( \alpha , \beta ) } ( x) ( 1 - x ) ^ \alpha | ||
+ | ( 1 + x ) ^ \beta d x , | ||
+ | $$ | ||
which generalizes the expression given in [[Gegenbauer transform|Gegenbauer transform]]. | which generalizes the expression given in [[Gegenbauer transform|Gegenbauer transform]]. |
Revision as of 22:14, 5 June 2020
The integral transforms
$$ J \{ F ( x) \} = \ f ^ { ( \alpha , \beta ) } ( n) = \ \int\limits _ { - } 1 ^ { 1 } P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) dx, $$
$$ n = 0, 1 \dots $$
where the $ P _ {n} ^ {( \alpha , \beta ) } ( x) $ are the Jacobi polynomials of degree $ n $, and $ \alpha > - 1 $ and $ \beta > - 1 $ are real numbers. The inversion formula has the form
$$ F ( x) = \ \sum _ {n = 0 } ^ \infty \frac{1}{\delta _ {n} } ( 1 - x) ^ \alpha ( 1 + x) ^ \beta P _ {n} ^ {( \alpha , \beta ) } ( x) f ^ { ( \alpha , \beta ) } ( n), $$
$$ - 1 < x < 1, $$
$$ \delta _ {n} = \frac{2 ^ {\alpha + \beta + 1 } \Gamma ( \alpha + n + 1) \Gamma ( \beta + n + 1) }{n! ( \alpha + \beta + 2n + 1) \Gamma ( \alpha + \beta + n + 1) } , $$
provided the series converges.
The Jacobi transform reduces the operation
$$ T [ F ( x)] = \ { \frac{d}{dx} } \left \{ ( 1 - x ^ {2} ) \frac{dF }{dx } + [( \alpha - \beta ) + ( \alpha + \beta ) x] \frac{dF }{dx } \right \} $$
to an algebraic one by the formula
$$ J \{ T [ F ( x)] \} = - ( n + 1) ( n + \alpha + \beta ) f ^ { ( \alpha , \beta ) } ( n) + $$
$$ + \left . \{ [( \alpha - \beta ) + ( \alpha + \beta ) x] P _ {n} ^ {( \alpha , \beta ) } ( x) F ( x) \} \right | _ {-} 1 ^ {1} . $$
When $ \alpha = \beta = 0 $ the Jacobi transform is the Legendre transform; for $ \alpha = \beta = \nu - 1/2 $ it is the Gegenbauer transform. Jacobi transforms are used in solving differential equations containing the operator $ T $. The Jacobi transform has also been defined for a special class of generalized functions.
References
[1] | E.J. Scott, "Jacobi transforms" Quart. J. Math. , 4 : 13 (1953) pp. 36–40 |
[2] | V.A. Ditkin, A.P. Prundnikov, "Integral transforms" Progress in Math. (1969) pp. 1–85 Itogi Nauk. Mat. Anal. 1966 (1967) |
[3] | A.G. Zemanian, "Generalized integral transformations" , Interscience (1968) |
Comments
See (the editorial comments to) Gegenbauer transform. Usually the Jacobi transform is written as
$$ \int\limits _ { - } 1 ^ { 1 } F ( x) P _ {n} ^ {( \alpha , \beta ) } ( x) ( 1 - x ) ^ \alpha ( 1 + x ) ^ \beta d x , $$
which generalizes the expression given in Gegenbauer transform.
Jacobi transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_transform&oldid=13591