Namespaces
Variants
Actions

Difference between revisions of "Invariant test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A statistical test based on an [[Invariant statistic|invariant statistic]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523401.png" /> be a sampling space and suppose that the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523402.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523403.png" /> is tested against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523404.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523405.png" />, where the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523406.png" /> is invariant under the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523407.png" /> of one-to-one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523408.png" />-measurable transformations of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i0523409.png" /> onto itself, that is,
+
<!--
 +
i0523401.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/I052/I.0502340 Invariant test
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234010.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234011.png" /> is the element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234012.png" /> of one-to-one transformations of the probability measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234013.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234014.png" />, defined for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234016.png" /> according to the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234018.png" />. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234019.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234020.png" />, in testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234021.png" /> it is natural to use a test based on an invariant statistic with respect to this same group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234022.png" />. Such a test is called an invariant test, and the class of all invariant tests is the same as the class of tests based on a maximal invariant. In the theory of invariant tests, the Hunt–Stein theorem plays an important role: If the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234023.png" /> is invariant under the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234024.png" />, then there exists a maximin test in the class of invariant tests for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052340/i05234025.png" />. An invariant test is a special case of an invariant statistical procedure (see [[Invariance of a statistical procedure|Invariance of a statistical procedure]]).
+
A statistical test based on an [[Invariant statistic|invariant statistic]]. Let  $  ( \mathfrak X , \mathfrak B , {\mathsf P} _  \theta  , \theta \in \Theta ) $
 +
be a sampling space and suppose that the hypothesis  $  H _ {0} $:
 +
$  \theta \in \Theta _ {0} \subset  \Theta $
 +
is tested against the alternative  $  H _ {1} $:
 +
$  \theta \in \Theta _ {1} = \Theta \setminus  \Theta _ {0} $,
 +
where the hypothesis  $  H _ {0} $
 +
is invariant under the group  $  G = \{ g \} $
 +
of one-to-one  $  \mathfrak B $-
 +
measurable transformations of the space  $  \mathfrak X $
 +
onto itself, that is,
 +
 
 +
$$
 +
\overline{g}\; \Theta _ {0}  = \Theta _ {0} \  \textrm{ and } \ \
 +
\overline{g}\; \Theta _ {1}  = \Theta _ {1} \  \textrm{ for }  \textrm{ any } \
 +
g \in G ,
 +
$$
 +
 
 +
where  $  \overline{g}\; $
 +
is the element of the group $  \overline{G}\; = \{ \overline{g}\; \} $
 +
of one-to-one transformations of the probability measures $  {\mathsf P} _  \theta  $:  
 +
$  {\mathsf P} _  \theta  \rightarrow {\mathsf P} _ {\overline{g}\; \theta }  $,  
 +
defined for all $  \theta \in \Theta $
 +
and $  g \in G $
 +
according to the formula $  {\mathsf P} _ {\overline{g}\; \theta }  ( B ) = {\mathsf P} _  \theta  ( g  ^ {-} 1 B ) $,  
 +
$  B \in \mathfrak B $.  
 +
Since $  H _ {0} $
 +
is invariant under $  G $,  
 +
in testing $  H _ {0} $
 +
it is natural to use a test based on an invariant statistic with respect to this same group $  G $.  
 +
Such a test is called an invariant test, and the class of all invariant tests is the same as the class of tests based on a maximal invariant. In the theory of invariant tests, the Hunt–Stein theorem plays an important role: If the hypothesis $  H _ {0} $
 +
is invariant under the group $  G $,  
 +
then there exists a maximin test in the class of invariant tests for testing $  H _ {0} $.  
 +
An invariant test is a special case of an invariant statistical procedure (see [[Invariance of a statistical procedure|Invariance of a statistical procedure]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Schmetterer,  "Introduction to mathematical statistics" , Springer  (1974)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.J. Hall,  R.A. Wijsman,  J.K. Chosh,  "The relationships between sufficiency and invariance with applications in sequential analysis"  ''Ann. Math. Stat.'' , '''36'''  (1965)  pp. 575</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G.P. Klimov,  "Invariant inferences in statistics" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L. Schmetterer,  "Introduction to mathematical statistics" , Springer  (1974)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.J. Hall,  R.A. Wijsman,  J.K. Chosh,  "The relationships between sufficiency and invariance with applications in sequential analysis"  ''Ann. Math. Stat.'' , '''36'''  (1965)  pp. 575</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  G.P. Klimov,  "Invariant inferences in statistics" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


A statistical test based on an invariant statistic. Let $ ( \mathfrak X , \mathfrak B , {\mathsf P} _ \theta , \theta \in \Theta ) $ be a sampling space and suppose that the hypothesis $ H _ {0} $: $ \theta \in \Theta _ {0} \subset \Theta $ is tested against the alternative $ H _ {1} $: $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $, where the hypothesis $ H _ {0} $ is invariant under the group $ G = \{ g \} $ of one-to-one $ \mathfrak B $- measurable transformations of the space $ \mathfrak X $ onto itself, that is,

$$ \overline{g}\; \Theta _ {0} = \Theta _ {0} \ \textrm{ and } \ \ \overline{g}\; \Theta _ {1} = \Theta _ {1} \ \textrm{ for } \textrm{ any } \ g \in G , $$

where $ \overline{g}\; $ is the element of the group $ \overline{G}\; = \{ \overline{g}\; \} $ of one-to-one transformations of the probability measures $ {\mathsf P} _ \theta $: $ {\mathsf P} _ \theta \rightarrow {\mathsf P} _ {\overline{g}\; \theta } $, defined for all $ \theta \in \Theta $ and $ g \in G $ according to the formula $ {\mathsf P} _ {\overline{g}\; \theta } ( B ) = {\mathsf P} _ \theta ( g ^ {-} 1 B ) $, $ B \in \mathfrak B $. Since $ H _ {0} $ is invariant under $ G $, in testing $ H _ {0} $ it is natural to use a test based on an invariant statistic with respect to this same group $ G $. Such a test is called an invariant test, and the class of all invariant tests is the same as the class of tests based on a maximal invariant. In the theory of invariant tests, the Hunt–Stein theorem plays an important role: If the hypothesis $ H _ {0} $ is invariant under the group $ G $, then there exists a maximin test in the class of invariant tests for testing $ H _ {0} $. An invariant test is a special case of an invariant statistical procedure (see Invariance of a statistical procedure).

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1988)
[2] L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German)
[3] W.J. Hall, R.A. Wijsman, J.K. Chosh, "The relationships between sufficiency and invariance with applications in sequential analysis" Ann. Math. Stat. , 36 (1965) pp. 575
[4] G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)
[5] S. Zacks, "The theory of statistical inference" , Wiley (1971)
How to Cite This Entry:
Invariant test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_test&oldid=14858
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article