Namespaces
Variants
Actions

Difference between revisions of "Invariant statistic"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A statistic taking constant values on orbits generated by a group of one-to-one measurable transformations of the sample space. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522901.png" /> is the sample space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522902.png" /> is a group of one-to-one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522903.png" />-measurable transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522904.png" /> onto itself and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522905.png" /> is an invariant statistic, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522906.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052290/i0522908.png" />. Invariant statistics play an important role in the construction of invariant tests (cf. [[Invariant test|Invariant test]]; [[Invariance of a statistical procedure|Invariance of a statistical procedure]]).
+
<!--
 +
i0522901.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/I052/I.0502290 Invariant statistic
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A statistic taking constant values on orbits generated by a group of one-to-one measurable transformations of the sample space. Thus, if $  ( \mathfrak X , \mathfrak B ) $
 +
is the sample space, $  G = \{ g \} $
 +
is a group of one-to-one $  \mathfrak B $-
 +
measurable transformations of $  \mathfrak X $
 +
onto itself and $  t ( x) $
 +
is an invariant statistic, then $  t ( gx ) = t ( x) $
 +
for all $  x \in \mathfrak X $
 +
and $  g \in G $.  
 +
Invariant statistics play an important role in the construction of invariant tests (cf. [[Invariant test|Invariant test]]; [[Invariance of a statistical procedure|Invariance of a statistical procedure]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.P. Klimov,  "Invariant inferences in statistics" , Moscow  (1973)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.L. Lehmann,  "Testing statistical hypotheses" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Zacks,  "The theory of statistical inference" , Wiley  (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.P. Klimov,  "Invariant inferences in statistics" , Moscow  (1973)  (In Russian)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


A statistic taking constant values on orbits generated by a group of one-to-one measurable transformations of the sample space. Thus, if $ ( \mathfrak X , \mathfrak B ) $ is the sample space, $ G = \{ g \} $ is a group of one-to-one $ \mathfrak B $- measurable transformations of $ \mathfrak X $ onto itself and $ t ( x) $ is an invariant statistic, then $ t ( gx ) = t ( x) $ for all $ x \in \mathfrak X $ and $ g \in G $. Invariant statistics play an important role in the construction of invariant tests (cf. Invariant test; Invariance of a statistical procedure).

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
[2] S. Zacks, "The theory of statistical inference" , Wiley (1971)
[3] G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)
How to Cite This Entry:
Invariant statistic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_statistic&oldid=11547
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article