|
|
Line 1: |
Line 1: |
− | An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514501.png" /> of a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514502.png" /> with unit element such that every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514503.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514504.png" />, that is, satisfies an equation of the form
| + | <!-- |
| + | i0514501.png |
| + | $#A+1 = 73 n = 0 |
| + | $#C+1 = 73 : ~/encyclopedia/old_files/data/I051/I.0501450 Integral extension of a ring |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514505.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514506.png" />, a so-called equation of integral dependence.
| + | An extension |
| + | of a commutative ring A |
| + | with unit element such that every element x \in B |
| + | is integral over A , |
| + | that is, satisfies an equation of the form |
| | | |
− | An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514507.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514508.png" /> if and only if one of the following two equivalent conditions is satisfied: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i0514509.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145010.png" />-module of finite type; or 2) there exists a faithful <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145011.png" />-module that is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145012.png" />-module of finite type. An integral element is algebraic over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145014.png" /> is a field, the converse assertion holds. Elements of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145015.png" /> of complex numbers that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145016.png" /> are called algebraic integers. If a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145017.png" /> is a module of finite type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145018.png" />, then every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145019.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145020.png" /> (the converse need not be true).
| + | $$ |
| + | x ^ {n} + a _ {n - 1 } x ^ {n - 1 } + \dots + a _ {0} = 0, |
| + | $$ |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145021.png" /> is a commutative ring, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145023.png" /> be elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145024.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145027.png" /> are also integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145028.png" />, and the set of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145029.png" /> that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145030.png" /> forms a subring, called the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145032.png" />. All rings considered below are assumed to be commutative.
| + | where $ a _ {i} \in A $, |
| + | a so-called equation of integral dependence. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145033.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145035.png" /> is some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145036.png" />-algebra, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145037.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145039.png" /> is an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145041.png" /> is some multiplicative subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145042.png" />, then the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145043.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145044.png" />. An integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145045.png" /> is said to be integrally closed if the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145046.png" /> in its field of fractions is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145047.png" />. A [[Factorial ring|factorial ring]] is integrally closed. A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145048.png" /> is integrally closed if and only if for every maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145049.png" /> the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145050.png" /> is integrally closed.
| + | An element x |
| + | is integral over A |
| + | if and only if one of the following two equivalent conditions is satisfied: 1) A [ x] |
| + | is an A - |
| + | module of finite type; or 2) there exists a faithful A [ x] - |
| + | module that is an A - |
| + | module of finite type. An integral element is algebraic over A . |
| + | If A |
| + | is a field, the converse assertion holds. Elements of the field \mathbf C |
| + | of complex numbers that are integral over \mathbf Z |
| + | are called algebraic integers. If a ring B |
| + | is a module of finite type over $ A $, |
| + | then every element x \in B |
| + | is integral over A ( |
| + | the converse need not be true). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145051.png" /> be an integral extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145053.png" /> be a [[Prime ideal|prime ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145054.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145055.png" /> and there exists a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145057.png" /> that lies above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145058.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145059.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145060.png" />). The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145061.png" /> is maximal if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145062.png" /> is maximal. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145063.png" /> is a finite extension of the field of fractions of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145065.png" /> is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145066.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145067.png" />, then there are only finitely-many prime ideals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145068.png" /> that lie above a given prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145069.png" />.
| + | Suppose that R \supset A |
| + | is a commutative ring, and let x |
| + | and y |
| + | be elements of R |
| + | that are integral over A . |
| + | Then x + y |
| + | and xy |
| + | are also integral over A , |
| + | and the set of all elements of R |
| + | that are integral over A |
| + | forms a subring, called the integral closure of A |
| + | in R . |
| + | All rings considered below are assumed to be commutative. |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145070.png" />; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145071.png" /> is an integral extension if and only if both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051450/i05145073.png" /> are integral extensions.
| + | If B |
| + | is integral over A |
| + | and A ^ \prime |
| + | is some A - |
| + | algebra, then B \otimes A ^ \prime |
| + | is integral over A ^ \prime . |
| + | If B |
| + | is an integral extension of A |
| + | and S |
| + | is some multiplicative subset of A , |
| + | then the ring S ^ {-} 1 B |
| + | is integral over S ^ {-} 1 A . |
| + | An integral domain A |
| + | is said to be integrally closed if the integral closure of A |
| + | in its field of fractions is A . |
| + | A [[Factorial ring|factorial ring]] is integrally closed. A ring A |
| + | is integrally closed if and only if for every maximal ideal \mathfrak p \subset A |
| + | the local ring A _ {\mathfrak p } |
| + | is integrally closed. |
| + | |
| + | Let B |
| + | be an integral extension of A |
| + | and let \mathfrak p |
| + | be a [[Prime ideal|prime ideal]] of A . |
| + | Then \mathfrak p B \neq B |
| + | and there exists a prime ideal \mathfrak P |
| + | of B |
| + | that lies above \mathfrak p ( |
| + | that is, \mathfrak P |
| + | is such that $ \mathfrak p = \mathfrak P \cap A $). |
| + | The ideal \mathfrak P |
| + | is maximal if and only if \mathfrak p |
| + | is maximal. If L |
| + | is a finite extension of the field of fractions of a ring A |
| + | and B |
| + | is the integral closure of A |
| + | in L , |
| + | then there are only finitely-many prime ideals of B |
| + | that lie above a given prime ideal of A . |
| + | |
| + | Suppose that C \supset B \supset A ; |
| + | then C \supset A |
| + | is an integral extension if and only if both C \supset B |
| + | and B \supset A |
| + | are integral extensions. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)</TD></TR></table> |