Namespaces
Variants
Actions

Difference between pages "Fredholm solvability" and "Injective module"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
m
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let $A$ be a real $(n\times n)$-matrix and $b\in R^n$ a vector.
+
<!--
 +
i0512101.png
 +
$#A+1 = 92 n = 0
 +
$#C+1 = 92 : ~/encyclopedia/old_files/data/I051/I.0501210 Injective module
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The Fredholm alternative in $R^n$ states that the equation $Ax=b$ has a solution if and only if $b^T v =0$ for every vector $v\in R^n$ satisfying $A^T v =0$.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
This alternative has many applications, e.g. in bifurcation theory. It can be generalized to abstract spaces. So, let $E$ and $F$ be Banach spaces (cf. [[Banach space|Banach space]]) and let $T:E\rightarrow F$ be a continuous [[Linear operator|linear operator]]. Let $E^*$, respectively $F^*$, denote the topological dual of $E$, respectively $F$, and let $T^*$ denote the adjoint of $T$ (cf. also [[Duality|Duality]]; [[Adjoint operator|Adjoint operator]]). Define
+
An [[Injective object|injective object]] in the category of (right) modules over an associative [[ring with identity]] $  R $,
 +
i.e. an  $  R $-
 +
module  $  E $
 +
such that for any  $  R $-
 +
modules  $ M $,  
 +
$ N $,  
 +
for any monomorphism  $ i :  N \rightarrow M $,  
 +
and for any homomorphism  $ f :  N \rightarrow E $
 +
there is a homomorphism  $ g :  M \rightarrow E $
 +
that makes the following diagram commutative
  
$$(\ker T^*)^\perp = \{y\in F:(y,y^*)=0\forall y^* \in \ker T^*\}$$
+
$$  
  
An equation $Tx=y$ is said to be normally solvable (in the sense of F. Hausdorff) if it has a solution whenever $y \in (\ker T^*)^\perp$ (cf. also [[Normal solvability|Normal solvability]]). A classical result states that $Tx=y$ is normally solvable if and only if $T(E)$ is closed in $F$.
+
\begin{array}{rcr}
 +
N  &\rightarrow ^ { i }  & M  \\
 +
{ {} _ {f} } \downarrow  &{}  &\swarrow _ {g}  \\
 +
  E &{}  &{}  \\
 +
\end{array}
  
In non-linear analysis, this latter result is used as definition of normal solvability for non-linear operators.
+
$$
  
The phrase "Fredholm solvability" refers to results and techniques for solving differential and integral equations via the Fredholm alternative and, more generally, the Fredholm-type properties of the operator involved.
+
Here and below all  $  R $-
 +
modules are supposed to be right  $  R $-
 +
modules. The following conditions on an  $  R $-
 +
module  $  E $
 +
are equivalent to injectivity: 1) for any [[Exact sequence|exact sequence]]
 +
 
 +
$$
 +
0  \rightarrow  N  \rightarrow  M  \rightarrow  L  \rightarrow  0
 +
$$
 +
 
 +
the induced sequence
 +
 
 +
$$
 +
0  \rightarrow  \mathop{\rm Hom} _ {R} ( N , E )  \rightarrow  \mathop{\rm Hom} _ {R} ( M , E )  \rightarrow  \mathop{\rm Hom} _ {R} ( L , E )  \rightarrow  0
 +
$$
 +
 
 +
is exact; 2) any exact sequence of  $  R $-
 +
modules of the form
 +
 
 +
$$
 +
0  \rightarrow  E  \mathop \rightarrow \limits ^  \alpha    M  \mathop \rightarrow \limits ^  \beta    L  \rightarrow  0
 +
$$
 +
 
 +
splits, i.e. the submodule  $  \mathop{\rm Im}  \alpha =  \mathop{\rm Ker}  \beta $
 +
is a direct summand of  $  M $;
 +
3)  $  \mathop{\rm Ext} _ {R}  ^ {1} ( C , E ) = 0 $
 +
for all  $  R $-
 +
modules  $  C $;
 +
and 4) for any right ideal  $  I $
 +
of  $  R $
 +
a homomorphism of  $  R $-
 +
modules  $  f :  I \rightarrow E $
 +
can be extended to a homomorphism of  $  R $-
 +
modules  $  g :  R \rightarrow E $(
 +
Baer's criterion). There are  "enough" injective objects in the category of  $  R $-
 +
modules: Each  $  R $-
 +
module  $  M $
 +
can be imbedded in an injective module. Moreover, each module  $  M $
 +
has an [[injective envelope]]  $  E ( M) $,
 +
i.e. an injective module containing  $  M $
 +
in such a way that each non-zero submodule of  $  E ( M) $
 +
has non-empty intersection with  $  M $.
 +
Any imbedding of a module  $  M $
 +
into an injective module  $  E $
 +
can be extended to an imbedding of  $  E ( M) $
 +
into  $  E $.
 +
Every  $  R $-
 +
module  $  M $
 +
has an injective resolution
 +
 
 +
$$
 +
0  \rightarrow  M  \rightarrow  E _ {0}  \rightarrow  E _ {1}  \rightarrow \dots ,
 +
$$
 +
 
 +
i.e. an exact sequence of modules in which each module  $  E _ {i} $,
 +
$  i \geq  0 $,
 +
is injective. The length of the shortest injective resolution is called the injective dimension of the module (cf. also [[Homological dimension|Homological dimension]]).
 +
 
 +
A direct product of injective modules is an injective module. An injective module  $  E $
 +
is equal to $  E r $
 +
for any  $  r \in R $
 +
that is not a left zero divisor in  $  R $,
 +
i.e. an injective module is divisible. In particular, an Abelian group is an injective module over the ring  $  \mathbf Z $
 +
if and only if it is divisible. Let  $  R $
 +
be a commutative Noetherian ring. Then any injective module over it is a direct sum of injective hulls of modules of the form  $  R / P $,
 +
where  $  P $
 +
is a prime ideal in  $  R $.
 +
 
 +
Injective modules are extensively used in the description of various classes of rings (cf. [[Homological classification of rings|Homological classification of rings]]). Thus, all modules over a ring are injective if and only if the ring is semi-simple. The following conditions are equivalent:  $  R $
 +
is a right Noetherian ring; any direct sum of injective  $  R $-
 +
modules is injective; any injective  $  R $-
 +
module is decomposable as a direct sum of indecomposable  $  R $-
 +
modules. A ring  $  R $
 +
is right Artinian if and only if every injective module is a direct sum of injective hulls of simple modules. A ring  $  R $
 +
is right hereditary if and only if all its quotient modules by injective  $  R $-
 +
modules are injective, and also if and only if the sum of two injective submodules of an arbitrary  $  R $-
 +
module is injective. If the ring  $  R $
 +
is right hereditary and right Noetherian, then every  $  R $-
 +
module contains a largest injective submodule. The projectivity (injectivity) of all injective (projective)  $  R $-
 +
modules is equivalent to  $  R $
 +
being a [[Quasi-Frobenius ring|quasi-Frobenius ring]].
 +
 
 +
The injective hull of the module  $  R _ {R} $
 +
plays an important role in the theory of rings of fractions. E.g., if the right singular ideal of a ring  $  R $
 +
vanishes, if  $  E $
 +
is the injective hull of the module  $  R _ {R} $,
 +
and if  $  \Lambda =  \mathop{\rm Hom} _ {R} ( E , E ) $
 +
is its endomorphism ring, then the $  R $-
 +
modules  $  \Lambda _ {R} $
 +
and $  E _ {R} $
 +
are isomorphic, $  E $
 +
is a ring isomorphic to  $  \Lambda $
 +
and is also the maximal right ring of fractions of  $  R $,  
 +
and  $  \Lambda \cong E $
 +
is a self-injective right [[Regular ring (in the sense of von Neumann)|regular ring (in the sense of von Neumann)]].
 +
 
 +
In connection with various problems on extending module homomorphisms, some classes of modules  $  M $
 +
close to injective modules have been considered: quasi-injective modules (if  $  0 \rightarrow N \rightarrow M $
 +
and  $  f :  N \rightarrow M $,
 +
then  $  f $
 +
can be extended to an endomorphism of  $  M $);
 +
pseudo-injective modules (if  $  0 \rightarrow N \rightarrow M $
 +
and  $  f :  N \rightarrow M $
 +
is a monomorphism, then  $  f $
 +
can be extended to an endomorphism of  $  M $);
 +
and small-injective modules (all endomorphisms of submodules can be extended to endomorphisms of  $  M $).
 +
The quasi-injectivity of a module  $  M $
 +
is equivalent to the invariance of  $  M $
 +
in its injective hull under endomorphisms of the latter.
 +
 
 +
====References====
 +
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  C. Faith,  "Lectures on injective modules and quotient rings" , Springer  (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  D.W. Sharpe,  P. Vamos,  "Injective modules" , Cambridge Univ. Press  (1972)</TD></TR></table>
 +
 
 +
====Comments====
 +
A ring is called right hereditary if every right ideal is projective or, equivalently, if its right global dimension is  $  \leq  1 $.
 +
It is called semi right hereditary if every finitely-generated right ideal is projective. Commutative hereditary integral domains are Dedekind rings; a commutative semi-hereditary integral domain is called a Prüfer ring. A right hereditary ring need not be also left hereditary.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Hausdorff, "Zur Theorie der linearen metrischen Räume" ''J. Reine Angew. Math.'' , '''167''' (1932) pp. 265 {{MR|}} {{ZBL|0003.33104}} {{ZBL|58.1113.05}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.A. Kozlov, V.G. Maz'ya, J. Rossmann, "Elliptic boundary value problems in domains with point singularities" , Amer. Math. Soc. (1997) {{MR|1469972}} {{ZBL|0947.35004}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A.T. Prilepko, D.G. Orlovsky, I.A. Vasin, "Methods for solving inverse problems in mathematical physics" , M. Dekker (2000) {{MR|1748236}} {{ZBL|0947.35173}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.G. Orlovskij, "The Fredholm solvability of inverse problems for abstract differential equations" A.N. Tikhonov (ed.) et al. (ed.) , ''Ill-Posed Problems in the Natural Sciences'' , VSP (1992) {{MR|}} {{ZBL|0789.35178}} </TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Faith,   "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.C. McConnell,   J.C. Robson,   "Noncommutative Noetherian rings" , Wiley  (1987) pp. Part I, Chapt. 2</TD></TR></table>

Latest revision as of 22:12, 5 June 2020


An injective object in the category of (right) modules over an associative ring with identity $ R $, i.e. an $ R $- module $ E $ such that for any $ R $- modules $ M $, $ N $, for any monomorphism $ i : N \rightarrow M $, and for any homomorphism $ f : N \rightarrow E $ there is a homomorphism $ g : M \rightarrow E $ that makes the following diagram commutative

$$ \begin{array}{rcr} N &\rightarrow ^ { i } & M \\ { {} _ {f} } \downarrow &{} &\swarrow _ {g} \\ E &{} &{} \\ \end{array} $$

Here and below all $ R $- modules are supposed to be right $ R $- modules. The following conditions on an $ R $- module $ E $ are equivalent to injectivity: 1) for any exact sequence

$$ 0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0 $$

the induced sequence

$$ 0 \rightarrow \mathop{\rm Hom} _ {R} ( N , E ) \rightarrow \mathop{\rm Hom} _ {R} ( M , E ) \rightarrow \mathop{\rm Hom} _ {R} ( L , E ) \rightarrow 0 $$

is exact; 2) any exact sequence of $ R $- modules of the form

$$ 0 \rightarrow E \mathop \rightarrow \limits ^ \alpha M \mathop \rightarrow \limits ^ \beta L \rightarrow 0 $$

splits, i.e. the submodule $ \mathop{\rm Im} \alpha = \mathop{\rm Ker} \beta $ is a direct summand of $ M $; 3) $ \mathop{\rm Ext} _ {R} ^ {1} ( C , E ) = 0 $ for all $ R $- modules $ C $; and 4) for any right ideal $ I $ of $ R $ a homomorphism of $ R $- modules $ f : I \rightarrow E $ can be extended to a homomorphism of $ R $- modules $ g : R \rightarrow E $( Baer's criterion). There are "enough" injective objects in the category of $ R $- modules: Each $ R $- module $ M $ can be imbedded in an injective module. Moreover, each module $ M $ has an injective envelope $ E ( M) $, i.e. an injective module containing $ M $ in such a way that each non-zero submodule of $ E ( M) $ has non-empty intersection with $ M $. Any imbedding of a module $ M $ into an injective module $ E $ can be extended to an imbedding of $ E ( M) $ into $ E $. Every $ R $- module $ M $ has an injective resolution

$$ 0 \rightarrow M \rightarrow E _ {0} \rightarrow E _ {1} \rightarrow \dots , $$

i.e. an exact sequence of modules in which each module $ E _ {i} $, $ i \geq 0 $, is injective. The length of the shortest injective resolution is called the injective dimension of the module (cf. also Homological dimension).

A direct product of injective modules is an injective module. An injective module $ E $ is equal to $ E r $ for any $ r \in R $ that is not a left zero divisor in $ R $, i.e. an injective module is divisible. In particular, an Abelian group is an injective module over the ring $ \mathbf Z $ if and only if it is divisible. Let $ R $ be a commutative Noetherian ring. Then any injective module over it is a direct sum of injective hulls of modules of the form $ R / P $, where $ P $ is a prime ideal in $ R $.

Injective modules are extensively used in the description of various classes of rings (cf. Homological classification of rings). Thus, all modules over a ring are injective if and only if the ring is semi-simple. The following conditions are equivalent: $ R $ is a right Noetherian ring; any direct sum of injective $ R $- modules is injective; any injective $ R $- module is decomposable as a direct sum of indecomposable $ R $- modules. A ring $ R $ is right Artinian if and only if every injective module is a direct sum of injective hulls of simple modules. A ring $ R $ is right hereditary if and only if all its quotient modules by injective $ R $- modules are injective, and also if and only if the sum of two injective submodules of an arbitrary $ R $- module is injective. If the ring $ R $ is right hereditary and right Noetherian, then every $ R $- module contains a largest injective submodule. The projectivity (injectivity) of all injective (projective) $ R $- modules is equivalent to $ R $ being a quasi-Frobenius ring.

The injective hull of the module $ R _ {R} $ plays an important role in the theory of rings of fractions. E.g., if the right singular ideal of a ring $ R $ vanishes, if $ E $ is the injective hull of the module $ R _ {R} $, and if $ \Lambda = \mathop{\rm Hom} _ {R} ( E , E ) $ is its endomorphism ring, then the $ R $- modules $ \Lambda _ {R} $ and $ E _ {R} $ are isomorphic, $ E $ is a ring isomorphic to $ \Lambda $ and is also the maximal right ring of fractions of $ R $, and $ \Lambda \cong E $ is a self-injective right regular ring (in the sense of von Neumann).

In connection with various problems on extending module homomorphisms, some classes of modules $ M $ close to injective modules have been considered: quasi-injective modules (if $ 0 \rightarrow N \rightarrow M $ and $ f : N \rightarrow M $, then $ f $ can be extended to an endomorphism of $ M $); pseudo-injective modules (if $ 0 \rightarrow N \rightarrow M $ and $ f : N \rightarrow M $ is a monomorphism, then $ f $ can be extended to an endomorphism of $ M $); and small-injective modules (all endomorphisms of submodules can be extended to endomorphisms of $ M $). The quasi-injectivity of a module $ M $ is equivalent to the invariance of $ M $ in its injective hull under endomorphisms of the latter.

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)
[2] S. MacLane, "Homology" , Springer (1963)
[3] C. Faith, "Lectures on injective modules and quotient rings" , Springer (1967)
[4] D.W. Sharpe, P. Vamos, "Injective modules" , Cambridge Univ. Press (1972)

Comments

A ring is called right hereditary if every right ideal is projective or, equivalently, if its right global dimension is $ \leq 1 $. It is called semi right hereditary if every finitely-generated right ideal is projective. Commutative hereditary integral domains are Dedekind rings; a commutative semi-hereditary integral domain is called a Prüfer ring. A right hereditary ring need not be also left hereditary.

References

[a1] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[a2] J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) pp. Part I, Chapt. 2
How to Cite This Entry:
Fredholm solvability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fredholm_solvability&oldid=39558
This article was adapted from an original article by G. IsacThemistocles M. Rassias (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article