Difference between revisions of "Injective module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0512101.png | ||
+ | $#A+1 = 92 n = 0 | ||
+ | $#C+1 = 92 : ~/encyclopedia/old_files/data/I051/I.0501210 Injective module | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An [[Injective object|injective object]] in the category of (right) modules over an associative [[ring with identity]] $ R $, | |
+ | i.e. an $ R $- | ||
+ | module $ E $ | ||
+ | such that for any $ R $- | ||
+ | modules $ M $, | ||
+ | $ N $, | ||
+ | for any monomorphism $ i : N \rightarrow M $, | ||
+ | and for any homomorphism $ f : N \rightarrow E $ | ||
+ | there is a homomorphism $ g : M \rightarrow E $ | ||
+ | that makes the following diagram commutative | ||
− | + | $$ | |
+ | |||
+ | \begin{array}{rcr} | ||
+ | N &\rightarrow ^ { i } & M \\ | ||
+ | { {} _ {f} } \downarrow &{} &\swarrow _ {g} \\ | ||
+ | E &{} &{} \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
+ | |||
+ | Here and below all $ R $- | ||
+ | modules are supposed to be right $ R $- | ||
+ | modules. The following conditions on an $ R $- | ||
+ | module $ E $ | ||
+ | are equivalent to injectivity: 1) for any [[Exact sequence|exact sequence]] | ||
+ | |||
+ | $$ | ||
+ | 0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0 | ||
+ | $$ | ||
the induced sequence | the induced sequence | ||
− | + | $$ | |
+ | 0 \rightarrow \mathop{\rm Hom} _ {R} ( N , E ) \rightarrow \mathop{\rm Hom} _ {R} ( M , E ) \rightarrow \mathop{\rm Hom} _ {R} ( L , E ) \rightarrow 0 | ||
+ | $$ | ||
− | is exact; 2) any exact sequence of | + | is exact; 2) any exact sequence of $ R $- |
+ | modules of the form | ||
− | + | $$ | |
+ | 0 \rightarrow E \mathop \rightarrow \limits ^ \alpha M \mathop \rightarrow \limits ^ \beta L \rightarrow 0 | ||
+ | $$ | ||
− | splits, i.e. the submodule | + | splits, i.e. the submodule $ \mathop{\rm Im} \alpha = \mathop{\rm Ker} \beta $ |
+ | is a direct summand of $ M $; | ||
+ | 3) $ \mathop{\rm Ext} _ {R} ^ {1} ( C , E ) = 0 $ | ||
+ | for all $ R $- | ||
+ | modules $ C $; | ||
+ | and 4) for any right ideal $ I $ | ||
+ | of $ R $ | ||
+ | a homomorphism of $ R $- | ||
+ | modules $ f : I \rightarrow E $ | ||
+ | can be extended to a homomorphism of $ R $- | ||
+ | modules $ g : R \rightarrow E $( | ||
+ | Baer's criterion). There are "enough" injective objects in the category of $ R $- | ||
+ | modules: Each $ R $- | ||
+ | module $ M $ | ||
+ | can be imbedded in an injective module. Moreover, each module $ M $ | ||
+ | has an [[injective envelope]] $ E ( M) $, | ||
+ | i.e. an injective module containing $ M $ | ||
+ | in such a way that each non-zero submodule of $ E ( M) $ | ||
+ | has non-empty intersection with $ M $. | ||
+ | Any imbedding of a module $ M $ | ||
+ | into an injective module $ E $ | ||
+ | can be extended to an imbedding of $ E ( M) $ | ||
+ | into $ E $. | ||
+ | Every $ R $- | ||
+ | module $ M $ | ||
+ | has an injective resolution | ||
− | + | $$ | |
+ | 0 \rightarrow M \rightarrow E _ {0} \rightarrow E _ {1} \rightarrow \dots , | ||
+ | $$ | ||
− | i.e. an exact sequence of modules in which each module | + | i.e. an exact sequence of modules in which each module $ E _ {i} $, |
+ | $ i \geq 0 $, | ||
+ | is injective. The length of the shortest injective resolution is called the injective dimension of the module (cf. also [[Homological dimension|Homological dimension]]). | ||
− | A direct product of injective modules is an injective module. An injective module | + | A direct product of injective modules is an injective module. An injective module $ E $ |
+ | is equal to $ E r $ | ||
+ | for any $ r \in R $ | ||
+ | that is not a left zero divisor in $ R $, | ||
+ | i.e. an injective module is divisible. In particular, an Abelian group is an injective module over the ring $ \mathbf Z $ | ||
+ | if and only if it is divisible. Let $ R $ | ||
+ | be a commutative Noetherian ring. Then any injective module over it is a direct sum of injective hulls of modules of the form $ R / P $, | ||
+ | where $ P $ | ||
+ | is a prime ideal in $ R $. | ||
− | Injective modules are extensively used in the description of various classes of rings (cf. [[Homological classification of rings|Homological classification of rings]]). Thus, all modules over a ring are injective if and only if the ring is semi-simple. The following conditions are equivalent: | + | Injective modules are extensively used in the description of various classes of rings (cf. [[Homological classification of rings|Homological classification of rings]]). Thus, all modules over a ring are injective if and only if the ring is semi-simple. The following conditions are equivalent: $ R $ |
+ | is a right Noetherian ring; any direct sum of injective $ R $- | ||
+ | modules is injective; any injective $ R $- | ||
+ | module is decomposable as a direct sum of indecomposable $ R $- | ||
+ | modules. A ring $ R $ | ||
+ | is right Artinian if and only if every injective module is a direct sum of injective hulls of simple modules. A ring $ R $ | ||
+ | is right hereditary if and only if all its quotient modules by injective $ R $- | ||
+ | modules are injective, and also if and only if the sum of two injective submodules of an arbitrary $ R $- | ||
+ | module is injective. If the ring $ R $ | ||
+ | is right hereditary and right Noetherian, then every $ R $- | ||
+ | module contains a largest injective submodule. The projectivity (injectivity) of all injective (projective) $ R $- | ||
+ | modules is equivalent to $ R $ | ||
+ | being a [[Quasi-Frobenius ring|quasi-Frobenius ring]]. | ||
− | The injective hull of the module | + | The injective hull of the module $ R _ {R} $ |
+ | plays an important role in the theory of rings of fractions. E.g., if the right singular ideal of a ring $ R $ | ||
+ | vanishes, if $ E $ | ||
+ | is the injective hull of the module $ R _ {R} $, | ||
+ | and if $ \Lambda = \mathop{\rm Hom} _ {R} ( E , E ) $ | ||
+ | is its endomorphism ring, then the $ R $- | ||
+ | modules $ \Lambda _ {R} $ | ||
+ | and $ E _ {R} $ | ||
+ | are isomorphic, $ E $ | ||
+ | is a ring isomorphic to $ \Lambda $ | ||
+ | and is also the maximal right ring of fractions of $ R $, | ||
+ | and $ \Lambda \cong E $ | ||
+ | is a self-injective right [[Regular ring (in the sense of von Neumann)|regular ring (in the sense of von Neumann)]]. | ||
− | In connection with various problems on extending module homomorphisms, some classes of modules | + | In connection with various problems on extending module homomorphisms, some classes of modules $ M $ |
+ | close to injective modules have been considered: quasi-injective modules (if $ 0 \rightarrow N \rightarrow M $ | ||
+ | and $ f : N \rightarrow M $, | ||
+ | then $ f $ | ||
+ | can be extended to an endomorphism of $ M $); | ||
+ | pseudo-injective modules (if $ 0 \rightarrow N \rightarrow M $ | ||
+ | and $ f : N \rightarrow M $ | ||
+ | is a monomorphism, then $ f $ | ||
+ | can be extended to an endomorphism of $ M $); | ||
+ | and small-injective modules (all endomorphisms of submodules can be extended to endomorphisms of $ M $). | ||
+ | The quasi-injectivity of a module $ M $ | ||
+ | is equivalent to the invariance of $ M $ | ||
+ | in its injective hull under endomorphisms of the latter. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Lectures on injective modules and quotient rings" , Springer (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.W. Sharpe, P. Vamos, "Injective modules" , Cambridge Univ. Press (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Lectures on injective modules and quotient rings" , Springer (1967)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.W. Sharpe, P. Vamos, "Injective modules" , Cambridge Univ. Press (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A ring is called right hereditary if every right ideal is projective or, equivalently, if its right global dimension is | + | A ring is called right hereditary if every right ideal is projective or, equivalently, if its right global dimension is $ \leq 1 $. |
+ | It is called semi right hereditary if every finitely-generated right ideal is projective. Commutative hereditary integral domains are Dedekind rings; a commutative semi-hereditary integral domain is called a Prüfer ring. A right hereditary ring need not be also left hereditary. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) pp. Part I, Chapt. 2</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) pp. Part I, Chapt. 2</TD></TR></table> |
Latest revision as of 22:12, 5 June 2020
An injective object in the category of (right) modules over an associative ring with identity $ R $,
i.e. an $ R $-
module $ E $
such that for any $ R $-
modules $ M $,
$ N $,
for any monomorphism $ i : N \rightarrow M $,
and for any homomorphism $ f : N \rightarrow E $
there is a homomorphism $ g : M \rightarrow E $
that makes the following diagram commutative
$$ \begin{array}{rcr} N &\rightarrow ^ { i } & M \\ { {} _ {f} } \downarrow &{} &\swarrow _ {g} \\ E &{} &{} \\ \end{array} $$
Here and below all $ R $- modules are supposed to be right $ R $- modules. The following conditions on an $ R $- module $ E $ are equivalent to injectivity: 1) for any exact sequence
$$ 0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0 $$
the induced sequence
$$ 0 \rightarrow \mathop{\rm Hom} _ {R} ( N , E ) \rightarrow \mathop{\rm Hom} _ {R} ( M , E ) \rightarrow \mathop{\rm Hom} _ {R} ( L , E ) \rightarrow 0 $$
is exact; 2) any exact sequence of $ R $- modules of the form
$$ 0 \rightarrow E \mathop \rightarrow \limits ^ \alpha M \mathop \rightarrow \limits ^ \beta L \rightarrow 0 $$
splits, i.e. the submodule $ \mathop{\rm Im} \alpha = \mathop{\rm Ker} \beta $ is a direct summand of $ M $; 3) $ \mathop{\rm Ext} _ {R} ^ {1} ( C , E ) = 0 $ for all $ R $- modules $ C $; and 4) for any right ideal $ I $ of $ R $ a homomorphism of $ R $- modules $ f : I \rightarrow E $ can be extended to a homomorphism of $ R $- modules $ g : R \rightarrow E $( Baer's criterion). There are "enough" injective objects in the category of $ R $- modules: Each $ R $- module $ M $ can be imbedded in an injective module. Moreover, each module $ M $ has an injective envelope $ E ( M) $, i.e. an injective module containing $ M $ in such a way that each non-zero submodule of $ E ( M) $ has non-empty intersection with $ M $. Any imbedding of a module $ M $ into an injective module $ E $ can be extended to an imbedding of $ E ( M) $ into $ E $. Every $ R $- module $ M $ has an injective resolution
$$ 0 \rightarrow M \rightarrow E _ {0} \rightarrow E _ {1} \rightarrow \dots , $$
i.e. an exact sequence of modules in which each module $ E _ {i} $, $ i \geq 0 $, is injective. The length of the shortest injective resolution is called the injective dimension of the module (cf. also Homological dimension).
A direct product of injective modules is an injective module. An injective module $ E $ is equal to $ E r $ for any $ r \in R $ that is not a left zero divisor in $ R $, i.e. an injective module is divisible. In particular, an Abelian group is an injective module over the ring $ \mathbf Z $ if and only if it is divisible. Let $ R $ be a commutative Noetherian ring. Then any injective module over it is a direct sum of injective hulls of modules of the form $ R / P $, where $ P $ is a prime ideal in $ R $.
Injective modules are extensively used in the description of various classes of rings (cf. Homological classification of rings). Thus, all modules over a ring are injective if and only if the ring is semi-simple. The following conditions are equivalent: $ R $ is a right Noetherian ring; any direct sum of injective $ R $- modules is injective; any injective $ R $- module is decomposable as a direct sum of indecomposable $ R $- modules. A ring $ R $ is right Artinian if and only if every injective module is a direct sum of injective hulls of simple modules. A ring $ R $ is right hereditary if and only if all its quotient modules by injective $ R $- modules are injective, and also if and only if the sum of two injective submodules of an arbitrary $ R $- module is injective. If the ring $ R $ is right hereditary and right Noetherian, then every $ R $- module contains a largest injective submodule. The projectivity (injectivity) of all injective (projective) $ R $- modules is equivalent to $ R $ being a quasi-Frobenius ring.
The injective hull of the module $ R _ {R} $ plays an important role in the theory of rings of fractions. E.g., if the right singular ideal of a ring $ R $ vanishes, if $ E $ is the injective hull of the module $ R _ {R} $, and if $ \Lambda = \mathop{\rm Hom} _ {R} ( E , E ) $ is its endomorphism ring, then the $ R $- modules $ \Lambda _ {R} $ and $ E _ {R} $ are isomorphic, $ E $ is a ring isomorphic to $ \Lambda $ and is also the maximal right ring of fractions of $ R $, and $ \Lambda \cong E $ is a self-injective right regular ring (in the sense of von Neumann).
In connection with various problems on extending module homomorphisms, some classes of modules $ M $ close to injective modules have been considered: quasi-injective modules (if $ 0 \rightarrow N \rightarrow M $ and $ f : N \rightarrow M $, then $ f $ can be extended to an endomorphism of $ M $); pseudo-injective modules (if $ 0 \rightarrow N \rightarrow M $ and $ f : N \rightarrow M $ is a monomorphism, then $ f $ can be extended to an endomorphism of $ M $); and small-injective modules (all endomorphisms of submodules can be extended to endomorphisms of $ M $). The quasi-injectivity of a module $ M $ is equivalent to the invariance of $ M $ in its injective hull under endomorphisms of the latter.
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
[2] | S. MacLane, "Homology" , Springer (1963) |
[3] | C. Faith, "Lectures on injective modules and quotient rings" , Springer (1967) |
[4] | D.W. Sharpe, P. Vamos, "Injective modules" , Cambridge Univ. Press (1972) |
Comments
A ring is called right hereditary if every right ideal is projective or, equivalently, if its right global dimension is $ \leq 1 $. It is called semi right hereditary if every finitely-generated right ideal is projective. Commutative hereditary integral domains are Dedekind rings; a commutative semi-hereditary integral domain is called a Prüfer ring. A right hereditary ring need not be also left hereditary.
References
[a1] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
[a2] | J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) pp. Part I, Chapt. 2 |
Injective module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Injective_module&oldid=16793