|
|
Line 1: |
Line 1: |
− | A real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505001.png" /> defined on a certain set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505002.png" /> of real numbers such that the condition
| + | <!-- |
| + | i0505001.png |
| + | $#A+1 = 30 n = 0 |
| + | $#C+1 = 30 : ~/encyclopedia/old_files/data/I050/I.0500500 Increasing function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505003.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | implies
| + | A real-valued function $ f $ |
| + | defined on a certain set $ E $ |
| + | of real numbers such that the condition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505004.png" /></td> </tr></table> | + | $$ |
| + | x ^ \prime < x ^ {\prime\prime} ,\ \ |
| + | x ^ \prime , x ^ {\prime\prime} \in E |
| + | $$ |
| | | |
− | Such functions are sometimes called strictly increasing functions, the term "increasing functions" being reserved for functions which, for such given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505005.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505006.png" />, merely satisfy the condition
| + | implies |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505007.png" /></td> </tr></table> | + | $$ |
| + | f ( x ^ \prime ) < f ( x ^ {\prime\prime} ). |
| + | $$ |
| | | |
− | (non-decreasing functions). The inverse function of any strictly increasing function is single-valued and is also strictly increasing. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505008.png" /> is a right-sided (or left-sided) limit point of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i0505009.png" /> (cf. [[Limit point of a set|Limit point of a set]]), if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050010.png" /> is a non-decreasing function and if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050011.png" /> is bounded from below — or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050012.png" /> is bounded from above — then, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050013.png" /> (or, correspondingly, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050014.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050015.png" />, the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050016.png" /> will have a finite limit; if the set is not bounded from below (or, correspondingly, from above), the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050017.png" /> have an infinite limit equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050018.png" /> (or, correspondingly, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050019.png" />).
| + | Such functions are sometimes called strictly increasing functions, the term "increasing functions" being reserved for functions which, for such given $ x ^ \prime $ |
| + | and $ x ^ {\prime\prime} $, |
| + | merely satisfy the condition |
| | | |
| + | $$ |
| + | f ( x ^ \prime ) \leq f ( x ^ {\prime\prime} ) |
| + | $$ |
| | | |
| + | (non-decreasing functions). The inverse function of any strictly increasing function is single-valued and is also strictly increasing. If $ x _ {0} $ |
| + | is a right-sided (or left-sided) limit point of the set $ E $( |
| + | cf. [[Limit point of a set|Limit point of a set]]), if $ f $ |
| + | is a non-decreasing function and if the set $ A = \{ {y } : {y = f( x), x > x _ {0} , x \in E } \} $ |
| + | is bounded from below — or if $ \{ {y } : {y = f( x), x < x _ {0} , x \in E } \} $ |
| + | is bounded from above — then, as $ x \rightarrow x _ {0} + $( |
| + | or, correspondingly, as $ x \rightarrow x _ {0} - $), |
| + | $ x \in E $, |
| + | the values $ f( x) $ |
| + | will have a finite limit; if the set is not bounded from below (or, correspondingly, from above), the values $ f ( x) $ |
| + | have an infinite limit equal to $ - \infty $( |
| + | or, correspondingly, to $ + \infty $). |
| | | |
| ====Comments==== | | ====Comments==== |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050020.png" /> is non-decreasing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050022.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050023.png" /> referred to above is automatically bounded from below by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050024.png" />, unless it is empty. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050025.png" /> is a limit point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050026.png" />, then the right-hand limit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050027.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050028.png" /> is simply the infimum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050029.png" />: | + | If $ f $ |
| + | is non-decreasing on $ E $ |
| + | and $ x _ {0} \in E $, |
| + | then the set $ A $ |
| + | referred to above is automatically bounded from below by $ f ( x _ {0} ) $, |
| + | unless it is empty. If, in addition, $ x _ {0} $ |
| + | is a limit point of $ \{ {x \in E } : {x > x _ {0} } \} $, |
| + | then the right-hand limit of $ f $ |
| + | at $ x _ {0} $ |
| + | is simply the infimum of $ A $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050500/i05050030.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {x \downarrow x _ {0} } f ( x) = \inf A . |
| + | $$ |
| | | |
| Similar remarks hold for left-hand limits. | | Similar remarks hold for left-hand limits. |
A real-valued function $ f $
defined on a certain set $ E $
of real numbers such that the condition
$$
x ^ \prime < x ^ {\prime\prime} ,\ \
x ^ \prime , x ^ {\prime\prime} \in E
$$
implies
$$
f ( x ^ \prime ) < f ( x ^ {\prime\prime} ).
$$
Such functions are sometimes called strictly increasing functions, the term "increasing functions" being reserved for functions which, for such given $ x ^ \prime $
and $ x ^ {\prime\prime} $,
merely satisfy the condition
$$
f ( x ^ \prime ) \leq f ( x ^ {\prime\prime} )
$$
(non-decreasing functions). The inverse function of any strictly increasing function is single-valued and is also strictly increasing. If $ x _ {0} $
is a right-sided (or left-sided) limit point of the set $ E $(
cf. Limit point of a set), if $ f $
is a non-decreasing function and if the set $ A = \{ {y } : {y = f( x), x > x _ {0} , x \in E } \} $
is bounded from below — or if $ \{ {y } : {y = f( x), x < x _ {0} , x \in E } \} $
is bounded from above — then, as $ x \rightarrow x _ {0} + $(
or, correspondingly, as $ x \rightarrow x _ {0} - $),
$ x \in E $,
the values $ f( x) $
will have a finite limit; if the set is not bounded from below (or, correspondingly, from above), the values $ f ( x) $
have an infinite limit equal to $ - \infty $(
or, correspondingly, to $ + \infty $).
If $ f $
is non-decreasing on $ E $
and $ x _ {0} \in E $,
then the set $ A $
referred to above is automatically bounded from below by $ f ( x _ {0} ) $,
unless it is empty. If, in addition, $ x _ {0} $
is a limit point of $ \{ {x \in E } : {x > x _ {0} } \} $,
then the right-hand limit of $ f $
at $ x _ {0} $
is simply the infimum of $ A $:
$$
\lim\limits _ {x \downarrow x _ {0} } f ( x) = \inf A .
$$
Similar remarks hold for left-hand limits.