|
|
Line 1: |
Line 1: |
− | A set-theoretic inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502001.png" /> of a linear [[Normed space|normed space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502002.png" /> into a linear normed space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502003.png" />, for which the following inequality is valid for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502004.png" />:
| + | <!-- |
| + | i0502001.png |
| + | $#A+1 = 30 n = 0 |
| + | $#C+1 = 30 : ~/encyclopedia/old_files/data/I050/I.0500200 Imbedding of function spaces |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502005.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502006.png" /> is a constant which does not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502007.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502008.png" /> is the norm (semi-norm) of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i0502009.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020010.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020011.png" /> is the norm (semi-norm) of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020013.png" />.
| + | A set-theoretic inclusion $ V \subset W $ |
| + | of a linear [[Normed space|normed space]] $ V $ |
| + | into a linear normed space $ W $, |
| + | for which the following inequality is valid for any $ x \in V $: |
| | | |
− | The identity operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020014.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020015.png" />, which assigns to an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020016.png" /> the same element seen as an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020017.png" />, is said to be the imbedding operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020018.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020019.png" />. The imbedding operator is always bounded. If the imbedding operator is a [[Completely-continuous operator|completely-continuous operator]], the imbedding of function spaces is said to be compact. Facts on imbedding of function spaces are established by so-called [[Imbedding theorems|imbedding theorems]].
| + | $$ |
| + | \| x \| _ {W} \leq C \| x \| _ {V} , |
| + | $$ |
| | | |
− | Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020020.png" /> be a Lebesgue-measurable set in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020021.png" />-dimensional Euclidean space with finite measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020022.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020024.png" />, be the Lebesgue space of measurable functions which are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020025.png" />-th power summable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020026.png" /> with norm
| + | where $ C $ |
| + | is a constant which does not depend on $ x \in V $. |
| + | Here, $ \| x \| _ {W} $ |
| + | is the norm (semi-norm) of the element $ x $ |
| + | in $ W $, |
| + | while $ \| x \| _ {V} $ |
| + | is the norm (semi-norm) of the element $ x $ |
| + | in $ V $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020027.png" /></td> </tr></table>
| + | The identity operator from $ V $ |
| + | into $ W $, |
| + | which assigns to an element $ x \in V $ |
| + | the same element seen as an element of $ W $, |
| + | is said to be the imbedding operator of $ V $ |
| + | into $ W $. |
| + | The imbedding operator is always bounded. If the imbedding operator is a [[Completely-continuous operator|completely-continuous operator]], the imbedding of function spaces is said to be compact. Facts on imbedding of function spaces are established by so-called [[Imbedding theorems|imbedding theorems]]. |
| | | |
− | Then, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020028.png" />, one has the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020029.png" />, and
| + | Example. Let $ E $ |
| + | be a Lebesgue-measurable set in the $ n $- |
| + | dimensional Euclidean space with finite measure $ \mathop{\rm mes} E $ |
| + | and let $ L _ {p} ( E) $, |
| + | $ 1 \leq p \leq \infty $, |
| + | be the Lebesgue space of measurable functions which are $ p $- |
| + | th power summable over $ E $ |
| + | with norm |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050200/i05020030.png" /></td> </tr></table>
| + | $$ |
| + | \| x \| _ {p} = \ |
| + | \left [ \int\limits _ { E } |
| + | | x ( t) | ^ {p} |
| + | dt \right ] ^ {1/p} . |
| + | $$ |
| | | |
| + | Then, if $ p \geq q $, |
| + | one has the imbedding $ L _ {p} ( E) \rightarrow L _ {q} ( E) $, |
| + | and |
| | | |
| + | $$ |
| + | \| x \| _ {q} \leq \ |
| + | ( \mathop{\rm mes} E) ^ {1/q- 1/p } |
| + | \| x \| _ {p} . |
| + | $$ |
| | | |
| ====Comments==== | | ====Comments==== |
| For references cf. [[Imbedding theorems|Imbedding theorems]]. | | For references cf. [[Imbedding theorems|Imbedding theorems]]. |
A set-theoretic inclusion $ V \subset W $
of a linear normed space $ V $
into a linear normed space $ W $,
for which the following inequality is valid for any $ x \in V $:
$$
\| x \| _ {W} \leq C \| x \| _ {V} ,
$$
where $ C $
is a constant which does not depend on $ x \in V $.
Here, $ \| x \| _ {W} $
is the norm (semi-norm) of the element $ x $
in $ W $,
while $ \| x \| _ {V} $
is the norm (semi-norm) of the element $ x $
in $ V $.
The identity operator from $ V $
into $ W $,
which assigns to an element $ x \in V $
the same element seen as an element of $ W $,
is said to be the imbedding operator of $ V $
into $ W $.
The imbedding operator is always bounded. If the imbedding operator is a completely-continuous operator, the imbedding of function spaces is said to be compact. Facts on imbedding of function spaces are established by so-called imbedding theorems.
Example. Let $ E $
be a Lebesgue-measurable set in the $ n $-
dimensional Euclidean space with finite measure $ \mathop{\rm mes} E $
and let $ L _ {p} ( E) $,
$ 1 \leq p \leq \infty $,
be the Lebesgue space of measurable functions which are $ p $-
th power summable over $ E $
with norm
$$
\| x \| _ {p} = \
\left [ \int\limits _ { E }
| x ( t) | ^ {p}
dt \right ] ^ {1/p} .
$$
Then, if $ p \geq q $,
one has the imbedding $ L _ {p} ( E) \rightarrow L _ {q} ( E) $,
and
$$
\| x \| _ {q} \leq \
( \mathop{\rm mes} E) ^ {1/q- 1/p }
\| x \| _ {p} .
$$
For references cf. Imbedding theorems.