Namespaces
Variants
Actions

Difference between revisions of "Homomorphism"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A morphism in a category of algebraic systems (cf. [[Algebraic system|Algebraic system]]). It is a mapping of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478801.png" /> that preserves the basic operations and the basic relations. More exactly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478802.png" /> be an algebraic system with basic operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478804.png" />, and with basic relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478806.png" />. A homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478807.png" /> into a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478808.png" /> of the same type is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h0478809.png" /> that satisfies the following two conditions:
+
<!--
 +
h0478801.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/H047/H.0407880 Homomorphism
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
A morphism in a category of algebraic systems (cf. [[Algebraic system|Algebraic system]]). It is a mapping of an algebraic system  $  \mathbf A $
 +
that preserves the basic operations and the basic relations. More exactly, let  $  \mathbf A = \langle  A, \{ o _ {i} : i \in I \} , \{ r _ {j} : j \in J \}\rangle $
 +
be an algebraic system with basic operations  $  o _ {i} $,
 +
$  i \in I $,
 +
and with basic relations  $  r _ {j} $,
 +
$  j \in J $.
 +
A homomorphism from  $  \mathbf A $
 +
into a system  $  \mathbf A  ^  \prime  = \langle  A  ^  \prime  , \{ o _ {i}  ^  \prime  : i \in I \} , \{ r _ {j}  ^  \prime  : j \in J \} \rangle $
 +
of the same type is a mapping  $  \phi : A \rightarrow A  ^  \prime  $
 +
that satisfies the following two conditions:
  
for all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788012.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788013.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788015.png" />.
+
$$ \tag{1 }
 +
\phi ( o _ {i} ( a _ {1} \dots a _ {n _ {i}  } ))  = \
 +
o _ {i}  ^  \prime  ( \phi ( a _ {1} ) \dots \phi ( a _ {n _ {i}  } )),
 +
$$
  
E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788016.png" /> is a group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788017.png" /> is a normal subgroup of it, then by assigning to each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788018.png" /> its coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788019.png" /> one obtains a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788020.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788021.png" /> onto the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788022.png" />.
+
$$ \tag{2 }
 +
( a _ {1} \dots a _ {m} ) \in r _ {j}  \Rightarrow  ( \phi ( a _ {1} ) \dots \phi ( a _ {m} )) \in r _ {j}  ^  \prime  ,
 +
$$
  
Suppose that each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788023.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788024.png" /> is brought into correspondence with some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788025.png" />-ary function symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788026.png" />, while each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788027.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788028.png" /> is brought into correspondence with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788029.png" />-place predicate symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788030.png" />, and suppose that in each system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788031.png" /> of the same type as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788032.png" /> the result of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788033.png" />-th basic operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788034.png" />, applied to the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788035.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788036.png" />, is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788037.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788038.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788039.png" />. Conditions (1), (2) are then simplified and take the form
+
for all elements  $  a _ {1} , a _ {2} \dots $
 +
from $  A $
 +
and all  $  i \in I $,  
 +
$  j \in J $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788040.png" /></td> </tr></table>
+
E.g., if  $  G $
 +
is a group and  $  N $
 +
is a normal subgroup of it, then by assigning to each element  $  g \in G $
 +
its coset  $  N g $
 +
one obtains a homomorphism  $  \phi $
 +
from  $  G $
 +
onto the quotient group  $  G / N $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788041.png" /></td> </tr></table>
+
Suppose that each element  $  i $
 +
from  $  I $
 +
is brought into correspondence with some  $  n _ {i} $-
 +
ary function symbol  $  F _ {i} $,
 +
while each element  $  j $
 +
from  $  J $
 +
is brought into correspondence with an  $  m _ {j} $-
 +
place predicate symbol  $  P _ {j} $,
 +
and suppose that in each system  $  \mathbf A  ^  \prime  $
 +
of the same type as  $  \mathbf A $
 +
the result of the  $  i $-
 +
th basic operation  $  o _ {i}  ^  \prime  $,
 +
applied to the elements  $  x _ {1} \dots x _ {n _ {i}  } $
 +
from  $  A  ^  \prime  $,
 +
is written as  $  F _ {i} ( x _ {1} \dots x _ {n _ {i}  } ) $,
 +
while  $  ( x _ {1} \dots x _ {m _ {j}  } ) \in r _ {j}  ^  \prime  $
 +
is denoted by  $  P _ {j} ( x _ {1} \dots x _ {m _ {j}  } ) $.  
 +
Conditions (1), (2) are then simplified and take the form
  
A homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788042.png" /> is called strong if for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788043.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788044.png" /> and for any predicate symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788046.png" />, the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788047.png" /> implies that there exist elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788048.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788050.png" />, and such that the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788051.png" /> holds.
+
$$
 +
\phi ( F _ {i} ( a _ {1} \dots a _ {n _ {i}  } ))  = \
 +
F _ {i} ( \phi ( a _ {1} ) \dots \phi ( a _ {n _ {i}  } )),
 +
$$
 +
 
 +
$$
 +
P _ {j} ( a _ {1} \dots a _ {m _ {j}  } )  \Rightarrow  P _ {j} ( \phi ( a _ {1} ) \dots \phi ( a _ {m _ {j}  } )).
 +
$$
 +
 
 +
A homomorphism $  \phi : \mathbf A \rightarrow \mathbf A  ^  \prime  $
 +
is called strong if for any elements $  a _ {1}  ^  \prime  \dots a _ {m _ {j}  }  ^  \prime  $
 +
from $  A  ^  \prime  $
 +
and for any predicate symbol $  P _ {j} $,  
 +
$  j \in J $,  
 +
the condition $  P _ {j} ( a _ {1}  ^  \prime  \dots a _ {m _ {j}  }  ^  \prime  ) $
 +
implies that there exist elements $  a _ {1} \dots a _ {m _ {j}  } $
 +
in $  A $
 +
such that $  a _ {1}  ^  \prime  = \phi ( a _ {1} ) \dots a _ {m _ {j}  }  ^  \prime  = \phi ( a _ {m _ {j}  } ) $,  
 +
and such that the relation $  P _ {j} ( a _ {1} \dots a _ {m _ {j}  } ) $
 +
holds.
  
 
In the case of algebras the concepts of a homomorphism and a strong homomorphism coincide. For models there exist homomorphisms that are not strong, and one-to-one homomorphisms that are not isomorphisms (cf. [[Isomorphism|Isomorphism]]).
 
In the case of algebras the concepts of a homomorphism and a strong homomorphism coincide. For models there exist homomorphisms that are not strong, and one-to-one homomorphisms that are not isomorphisms (cf. [[Isomorphism|Isomorphism]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788052.png" /> is a homomorphism of an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788053.png" /> into an algebraic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788055.png" /> is the [[Kernel congruence|kernel congruence]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788056.png" />, then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788057.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788058.png" /> is a homomorphism of the quotient system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788059.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788060.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788061.png" /> is a strong homomorphism, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788062.png" /> is an isomorphism. This is one of the most general formulations of the homomorphism theorem.
+
If $  \phi $
 +
is a homomorphism of an algebraic system $  \mathbf A $
 +
into an algebraic system $  \mathbf A  ^  \prime  $
 +
and $  \theta $
 +
is the [[Kernel congruence|kernel congruence]] of $  \phi $,  
 +
then the mapping $  \psi : ( A/ \theta ) \rightarrow A  ^  \prime  $
 +
defined by the formula $  \psi ( a/ \theta ) = \phi ( a) $
 +
is a homomorphism of the quotient system $  \mathbf A / \theta $
 +
into $  \mathbf A  ^  \prime  $.  
 +
If, in addition, $  \phi $
 +
is a strong homomorphism, then $  \psi $
 +
is an isomorphism. This is one of the most general formulations of the homomorphism theorem.
  
 
It should be noted that the name  "homomorphism"  is sometimes applied to morphisms in categories other than categories of algebraic systems (homomorphisms of graphs, sheaves, Lie groups).
 
It should be noted that the name  "homomorphism"  is sometimes applied to morphisms in categories other than categories of algebraic systems (homomorphisms of graphs, sheaves, Lie groups).
Line 25: Line 103:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.C. Chang,  H.J. Keisler,  "Model theory" , North-Holland  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algebraic systems" , Springer  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.C. Chang,  H.J. Keisler,  "Model theory" , North-Holland  (1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For example, a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788063.png" /> between two groups (cf. [[Group|Group]]) is a mapping which commutes with the basic group-theoretic operations of multiplication, inversion and identity:
+
For example, a homomorphism $  \phi : G \rightarrow H $
 +
between two groups (cf. [[Group|Group]]) is a mapping which commutes with the basic group-theoretic operations of multiplication, inversion and identity:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047880/h04788064.png" /></td> </tr></table>
+
$$
 +
\phi ( g _ {1} g _ {2} )  = \
 +
\phi ( g _ {1} ) \phi ( g _ {2} ) ,\ \
 +
\phi ( g  ^ {-} 1 )  = ( \phi ( g ) )  ^ {-} 1 ,\ \
 +
\phi ( e _ {G} )  = e _ {H} .
 +
$$
  
 
In this particular case it is well-known that the first of these conditions implies the other two, but in general the definition cannot be simplified in this way.
 
In this particular case it is well-known that the first of these conditions implies the other two, but in general the definition cannot be simplified in this way.

Latest revision as of 22:11, 5 June 2020


A morphism in a category of algebraic systems (cf. Algebraic system). It is a mapping of an algebraic system $ \mathbf A $ that preserves the basic operations and the basic relations. More exactly, let $ \mathbf A = \langle A, \{ o _ {i} : i \in I \} , \{ r _ {j} : j \in J \}\rangle $ be an algebraic system with basic operations $ o _ {i} $, $ i \in I $, and with basic relations $ r _ {j} $, $ j \in J $. A homomorphism from $ \mathbf A $ into a system $ \mathbf A ^ \prime = \langle A ^ \prime , \{ o _ {i} ^ \prime : i \in I \} , \{ r _ {j} ^ \prime : j \in J \} \rangle $ of the same type is a mapping $ \phi : A \rightarrow A ^ \prime $ that satisfies the following two conditions:

$$ \tag{1 } \phi ( o _ {i} ( a _ {1} \dots a _ {n _ {i} } )) = \ o _ {i} ^ \prime ( \phi ( a _ {1} ) \dots \phi ( a _ {n _ {i} } )), $$

$$ \tag{2 } ( a _ {1} \dots a _ {m} ) \in r _ {j} \Rightarrow ( \phi ( a _ {1} ) \dots \phi ( a _ {m} )) \in r _ {j} ^ \prime , $$

for all elements $ a _ {1} , a _ {2} \dots $ from $ A $ and all $ i \in I $, $ j \in J $.

E.g., if $ G $ is a group and $ N $ is a normal subgroup of it, then by assigning to each element $ g \in G $ its coset $ N g $ one obtains a homomorphism $ \phi $ from $ G $ onto the quotient group $ G / N $.

Suppose that each element $ i $ from $ I $ is brought into correspondence with some $ n _ {i} $- ary function symbol $ F _ {i} $, while each element $ j $ from $ J $ is brought into correspondence with an $ m _ {j} $- place predicate symbol $ P _ {j} $, and suppose that in each system $ \mathbf A ^ \prime $ of the same type as $ \mathbf A $ the result of the $ i $- th basic operation $ o _ {i} ^ \prime $, applied to the elements $ x _ {1} \dots x _ {n _ {i} } $ from $ A ^ \prime $, is written as $ F _ {i} ( x _ {1} \dots x _ {n _ {i} } ) $, while $ ( x _ {1} \dots x _ {m _ {j} } ) \in r _ {j} ^ \prime $ is denoted by $ P _ {j} ( x _ {1} \dots x _ {m _ {j} } ) $. Conditions (1), (2) are then simplified and take the form

$$ \phi ( F _ {i} ( a _ {1} \dots a _ {n _ {i} } )) = \ F _ {i} ( \phi ( a _ {1} ) \dots \phi ( a _ {n _ {i} } )), $$

$$ P _ {j} ( a _ {1} \dots a _ {m _ {j} } ) \Rightarrow P _ {j} ( \phi ( a _ {1} ) \dots \phi ( a _ {m _ {j} } )). $$

A homomorphism $ \phi : \mathbf A \rightarrow \mathbf A ^ \prime $ is called strong if for any elements $ a _ {1} ^ \prime \dots a _ {m _ {j} } ^ \prime $ from $ A ^ \prime $ and for any predicate symbol $ P _ {j} $, $ j \in J $, the condition $ P _ {j} ( a _ {1} ^ \prime \dots a _ {m _ {j} } ^ \prime ) $ implies that there exist elements $ a _ {1} \dots a _ {m _ {j} } $ in $ A $ such that $ a _ {1} ^ \prime = \phi ( a _ {1} ) \dots a _ {m _ {j} } ^ \prime = \phi ( a _ {m _ {j} } ) $, and such that the relation $ P _ {j} ( a _ {1} \dots a _ {m _ {j} } ) $ holds.

In the case of algebras the concepts of a homomorphism and a strong homomorphism coincide. For models there exist homomorphisms that are not strong, and one-to-one homomorphisms that are not isomorphisms (cf. Isomorphism).

If $ \phi $ is a homomorphism of an algebraic system $ \mathbf A $ into an algebraic system $ \mathbf A ^ \prime $ and $ \theta $ is the kernel congruence of $ \phi $, then the mapping $ \psi : ( A/ \theta ) \rightarrow A ^ \prime $ defined by the formula $ \psi ( a/ \theta ) = \phi ( a) $ is a homomorphism of the quotient system $ \mathbf A / \theta $ into $ \mathbf A ^ \prime $. If, in addition, $ \phi $ is a strong homomorphism, then $ \psi $ is an isomorphism. This is one of the most general formulations of the homomorphism theorem.

It should be noted that the name "homomorphism" is sometimes applied to morphisms in categories other than categories of algebraic systems (homomorphisms of graphs, sheaves, Lie groups).

References

[1] A.I. Mal'tsev, "Algebraic systems" , Springer (1973) (Translated from Russian)
[2] C.C. Chang, H.J. Keisler, "Model theory" , North-Holland (1973)

Comments

For example, a homomorphism $ \phi : G \rightarrow H $ between two groups (cf. Group) is a mapping which commutes with the basic group-theoretic operations of multiplication, inversion and identity:

$$ \phi ( g _ {1} g _ {2} ) = \ \phi ( g _ {1} ) \phi ( g _ {2} ) ,\ \ \phi ( g ^ {-} 1 ) = ( \phi ( g ) ) ^ {-} 1 ,\ \ \phi ( e _ {G} ) = e _ {H} . $$

In this particular case it is well-known that the first of these conditions implies the other two, but in general the definition cannot be simplified in this way.

How to Cite This Entry:
Homomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homomorphism&oldid=15278
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article