Namespaces
Variants
Actions

Difference between revisions of "Hellinger integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An integral of Riemann type of a [[Set function|set function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469001.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469002.png" /> is a space with a finite, non-negative, non-singular measure; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469004.png" />, is a totally-additive function with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469005.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469006.png" />; and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469007.png" /> is a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469008.png" />, then
+
<!--
 +
h0469001.png
 +
$#A+1 = 20 n = 0
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/H046/H.0406900 Hellinger integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h0469009.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and the Hellinger integral of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690010.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690011.png" /> is defined as
+
An integral of Riemann type of a [[Set function|set function]]  $  f $.  
 +
If  $  ( X, \mu ) $
 +
is a space with a finite, non-negative, non-singular measure; if  $  f ( E) $,
 +
$  E \subset  X $,
 +
is a totally-additive function with $  f ( E) = 0 $
 +
for  $  \mu E = 0 $;
 +
and if  $  \delta = \{ E _ {n} \} _ {1}  ^ {N} $
 +
is a partition of  $  X $,
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690012.png" /></td> </tr></table>
+
$$
 +
S _  \delta  = \
 +
\sum _ {n = 1 } ^ { N }
  
provided that this supremum is finite. Hellinger's integral can also be regarded as the limit over a directed set of partitions: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690013.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690014.png" /> is a subdivision of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690015.png" />.
+
\frac{f ^ { 2 } ( E _ {n} ) }{\mu E _ {n} }
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690016.png" /> is a summable function such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690017.png" /> is the [[Lebesgue integral|Lebesgue integral]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690018.png" />, then the Hellinger integral can be expressed in terms of the Lebesgue integral:
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690019.png" /></td> </tr></table>
+
and the Hellinger integral of  $  f ( E) $
 +
with respect to  $  X $
 +
is defined as
  
E. Hellinger in [[#References|[1]]] defined the integral for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046900/h04690020.png" /> in terms of point functions.
+
$$
 +
\int\limits _ { X }
 +
 
 +
\frac{f ^ { 2 } ( dE) }{d \mu }
 +
  = \
 +
\sup _  \delta  \
 +
S _  \delta  ,
 +
$$
 +
 
 +
provided that this supremum is finite. Hellinger's integral can also be regarded as the limit over a directed set of partitions:  $  \delta _ {1} < \delta _ {2} $
 +
if  $  \delta _ {2} $
 +
is a subdivision of  $  \delta _ {1} $.
 +
 
 +
If  $  \phi :  X \rightarrow \mathbf R $
 +
is a summable function such that  $  f ( E) $
 +
is the [[Lebesgue integral|Lebesgue integral]]  $  \int _ {E} \phi  d \mu $,
 +
then the Hellinger integral can be expressed in terms of the Lebesgue integral:
 +
 
 +
$$
 +
\int\limits _ { X }
 +
 
 +
\frac{f ^ { 2 } ( dE) }{d \mu }
 +
  = \
 +
\int\limits _ { X }
 +
\phi  ^ {2}  d \mu .
 +
$$
 +
 
 +
E. Hellinger in [[#References|[1]]] defined the integral for $  X = [ a, b] $
 +
in terms of point functions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Hellinger,  "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen"  ''J. Reine Angew. Math.'' , '''136'''  (1909)  pp. 210–271</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''5''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Hellinger,  "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen"  ''J. Reine Angew. Math.'' , '''136'''  (1909)  pp. 210–271</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''5''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR></table>

Latest revision as of 22:10, 5 June 2020


An integral of Riemann type of a set function $ f $. If $ ( X, \mu ) $ is a space with a finite, non-negative, non-singular measure; if $ f ( E) $, $ E \subset X $, is a totally-additive function with $ f ( E) = 0 $ for $ \mu E = 0 $; and if $ \delta = \{ E _ {n} \} _ {1} ^ {N} $ is a partition of $ X $, then

$$ S _ \delta = \ \sum _ {n = 1 } ^ { N } \frac{f ^ { 2 } ( E _ {n} ) }{\mu E _ {n} } $$

and the Hellinger integral of $ f ( E) $ with respect to $ X $ is defined as

$$ \int\limits _ { X } \frac{f ^ { 2 } ( dE) }{d \mu } = \ \sup _ \delta \ S _ \delta , $$

provided that this supremum is finite. Hellinger's integral can also be regarded as the limit over a directed set of partitions: $ \delta _ {1} < \delta _ {2} $ if $ \delta _ {2} $ is a subdivision of $ \delta _ {1} $.

If $ \phi : X \rightarrow \mathbf R $ is a summable function such that $ f ( E) $ is the Lebesgue integral $ \int _ {E} \phi d \mu $, then the Hellinger integral can be expressed in terms of the Lebesgue integral:

$$ \int\limits _ { X } \frac{f ^ { 2 } ( dE) }{d \mu } = \ \int\limits _ { X } \phi ^ {2} d \mu . $$

E. Hellinger in [1] defined the integral for $ X = [ a, b] $ in terms of point functions.

References

[1] E. Hellinger, "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen" J. Reine Angew. Math. , 136 (1909) pp. 210–271
[2] V.I. Smirnov, "A course of higher mathematics" , 5 , Addison-Wesley (1964) (Translated from Russian)
How to Cite This Entry:
Hellinger integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hellinger_integral&oldid=18237
This article was adapted from an original article by I.A. Vinogradova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article