Difference between revisions of "Hausdorff-Young inequalities"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0467501.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/H046/H.0406750 Hausdorff\ANDYoung inequalities | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Estimates of the Fourier coefficients of functions in $ L _ {p} $; | |
+ | established by W.H. Young [[#References|[1]]] and F. Hausdorff [[#References|[2]]]. Let $ \phi _ {n} $ | ||
+ | be an [[Orthonormal system|orthonormal system]] of functions on $ [ a, b] $, | ||
+ | let $ | \phi _ {n} ( t) | \leq M $ | ||
+ | for all $ t \in [ a, b] $ | ||
+ | and for all $ n = 1, 2 \dots $ | ||
+ | and let $ 1 < p \leq 2 $, | ||
+ | $ 1/p + 1/p ^ \prime = 1 $. | ||
+ | If $ f \in L _ {p} $, | ||
+ | then | ||
− | + | $$ \tag{1 } | |
+ | \left ( | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | | c _ {n} ( f ) | ^ {p ^ \prime } | ||
+ | \right ) ^ {1/p ^ \prime } \leq \ | ||
+ | M ^ {( 2 - p) / p } | ||
+ | \left ( \int\limits _ { a } ^ { b } | ||
+ | | f ( t) | ^ {p} dt | ||
+ | \right ) ^ {1/p} , | ||
+ | $$ | ||
− | + | where $ c _ {n} ( f ) $ | |
+ | are the Fourier coefficients of $ f $. | ||
+ | If $ \sum _ {n = 1 } ^ \infty | a _ {n} | ^ {p} $ | ||
+ | converges, there exists a function $ g $ | ||
+ | such that | ||
− | The Hausdorff–Young inequalities (1) and (2) are equivalent. For | + | $$ \tag{2 } |
+ | \left ( | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | | g ( t) | ^ {p ^ \prime } | ||
+ | dt \right ) ^ {1/p ^ \prime } \leq \ | ||
+ | M ^ {( 2 - p) / p } | ||
+ | \left ( \sum _ {n = 1 } ^ \infty | ||
+ | | a _ {n} | ^ {p} | ||
+ | \right ) ^ {1/p} . | ||
+ | $$ | ||
+ | |||
+ | For $ g $ | ||
+ | one may take $ \sum _ {n = 1 } ^ \infty a _ {n} \phi _ {n} $, | ||
+ | and this series converges in $ L _ {p ^ \prime } $. | ||
+ | |||
+ | The Hausdorff–Young inequalities (1) and (2) are equivalent. For $ p > 2 $ | ||
+ | they do not hold. Moreover, if $ b _ {n} \geq 0 $ | ||
+ | and if $ \sum _ {n = 1 } ^ \infty b _ {n} ^ {2} < \infty $, | ||
+ | then there exists a continuous function $ f $ | ||
+ | such that its Fourier coefficients $ c _ {n} ( f ) $ | ||
+ | in the trigonometric system satisfy the condition $ | c _ {n} ( f ) | > b _ {n} $. | ||
+ | A qualitative statement of the Hausdorff–Young inequality (if $ f \in L _ {p} $, | ||
+ | $ 1 \leq p \leq 2 $, | ||
+ | then $ \{ c _ {n} ( f ) \} \in l _ {p ^ \prime } $) | ||
+ | for unbounded orthonormal systems of functions does not hold, in general. An analogue of the Hausdorff–Young inequalities is valid for a broad class of function spaces. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.H. Young, "On the determination of the summability of a function by means of its Fourier constants" ''Proc. London Math. Soc. (2)'' , '''12''' (1913) pp. 71–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen" ''Math. Z.'' , '''16''' (1923) pp. 163–169</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> K. de Leeuw, J.P. Kahane, Y. Katznelson, "Sur les coefficients de Fourier des fonctions continues" ''C.R. Acad. Sci. Paris'' , '''285''' (1977) pp. 1001–1003</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.H. Young, "On the determination of the summability of a function by means of its Fourier constants" ''Proc. London Math. Soc. (2)'' , '''12''' (1913) pp. 71–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen" ''Math. Z.'' , '''16''' (1923) pp. 163–169</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> K. de Leeuw, J.P. Kahane, Y. Katznelson, "Sur les coefficients de Fourier des fonctions continues" ''C.R. Acad. Sci. Paris'' , '''285''' (1977) pp. 1001–1003</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Taking for | + | Taking for $ g $ |
+ | the series $ \sum _ {1} ^ \infty a _ {n} \phi _ {n} $ | ||
+ | gives $ a _ {n} = c _ {n} ( g) $ | ||
+ | for all $ n \geq 1 $. |
Latest revision as of 22:10, 5 June 2020
Estimates of the Fourier coefficients of functions in $ L _ {p} $;
established by W.H. Young [1] and F. Hausdorff [2]. Let $ \phi _ {n} $
be an orthonormal system of functions on $ [ a, b] $,
let $ | \phi _ {n} ( t) | \leq M $
for all $ t \in [ a, b] $
and for all $ n = 1, 2 \dots $
and let $ 1 < p \leq 2 $,
$ 1/p + 1/p ^ \prime = 1 $.
If $ f \in L _ {p} $,
then
$$ \tag{1 } \left ( \sum _ {n = 1 } ^ \infty | c _ {n} ( f ) | ^ {p ^ \prime } \right ) ^ {1/p ^ \prime } \leq \ M ^ {( 2 - p) / p } \left ( \int\limits _ { a } ^ { b } | f ( t) | ^ {p} dt \right ) ^ {1/p} , $$
where $ c _ {n} ( f ) $ are the Fourier coefficients of $ f $. If $ \sum _ {n = 1 } ^ \infty | a _ {n} | ^ {p} $ converges, there exists a function $ g $ such that
$$ \tag{2 } \left ( \int\limits _ { a } ^ { b } | g ( t) | ^ {p ^ \prime } dt \right ) ^ {1/p ^ \prime } \leq \ M ^ {( 2 - p) / p } \left ( \sum _ {n = 1 } ^ \infty | a _ {n} | ^ {p} \right ) ^ {1/p} . $$
For $ g $ one may take $ \sum _ {n = 1 } ^ \infty a _ {n} \phi _ {n} $, and this series converges in $ L _ {p ^ \prime } $.
The Hausdorff–Young inequalities (1) and (2) are equivalent. For $ p > 2 $ they do not hold. Moreover, if $ b _ {n} \geq 0 $ and if $ \sum _ {n = 1 } ^ \infty b _ {n} ^ {2} < \infty $, then there exists a continuous function $ f $ such that its Fourier coefficients $ c _ {n} ( f ) $ in the trigonometric system satisfy the condition $ | c _ {n} ( f ) | > b _ {n} $. A qualitative statement of the Hausdorff–Young inequality (if $ f \in L _ {p} $, $ 1 \leq p \leq 2 $, then $ \{ c _ {n} ( f ) \} \in l _ {p ^ \prime } $) for unbounded orthonormal systems of functions does not hold, in general. An analogue of the Hausdorff–Young inequalities is valid for a broad class of function spaces.
References
[1] | W.H. Young, "On the determination of the summability of a function by means of its Fourier constants" Proc. London Math. Soc. (2) , 12 (1913) pp. 71–88 |
[2] | F. Hausdorff, "Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen" Math. Z. , 16 (1923) pp. 163–169 |
[3] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
[4] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[5] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[6] | K. de Leeuw, J.P. Kahane, Y. Katznelson, "Sur les coefficients de Fourier des fonctions continues" C.R. Acad. Sci. Paris , 285 (1977) pp. 1001–1003 |
[7] | S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
Comments
Taking for $ g $ the series $ \sum _ {1} ^ \infty a _ {n} \phi _ {n} $ gives $ a _ {n} = c _ {n} ( g) $ for all $ n \geq 1 $.
Hausdorff-Young inequalities. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hausdorff-Young_inequalities&oldid=19029