Namespaces
Variants
Actions

Difference between revisions of "Hamilton equations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
h0462001.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/H046/H.0406200 Hamilton equations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Ordinary canonical first-order differential equations describing the motion of holonomic mechanical systems acted upon by external forces, as well as describing the extremals of problems of the classical calculus of variations.
 
Ordinary canonical first-order differential equations describing the motion of holonomic mechanical systems acted upon by external forces, as well as describing the extremals of problems of the classical calculus of variations.
  
Hamilton's equations, established by W. Hamilton [[#References|[1]]], are equivalent to the second-order [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]] (or to the [[Euler equation|Euler equation]] in the classical calculus of variations), in which the unknown magnitudes are the generalized coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462001.png" /> as well as the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462002.png" />. Hamilton replaced, in his considerations, the generalized velocities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462003.png" /> by the generalized momenta
+
Hamilton's equations, established by W. Hamilton [[#References|[1]]], are equivalent to the second-order [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]] (or to the [[Euler equation|Euler equation]] in the classical calculus of variations), in which the unknown magnitudes are the generalized coordinates $  q _ {i} $
 +
as well as the $  \dot{q} _ {i} = d q _ {i} / d t $.  
 +
Hamilton replaced, in his considerations, the generalized velocities $  \dot{q} _ {i} $
 +
by the generalized momenta
 +
 
 +
$$ \tag{1 }
 +
p _ {i}  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462004.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
\frac{\partial  L }{\partial  \dot{q} _ {i} }
 +
,\ \
 +
i = 1 \dots n,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462005.png" /> is the [[Lagrange function|Lagrange function]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462006.png" /> is the number of degrees of freedom of the system, and he defined the function
+
where $  L ( q _ {i} , \dot{q} _ {i} , t) $
 +
is the [[Lagrange function|Lagrange function]], $  n $
 +
is the number of degrees of freedom of the system, and he defined the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462007.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
H ( q _ {i} , p _ {i} , t)  = \
 +
\sum _ {i = 1 } ^ { n }
 +
p _ {i} \dot{q} _ {i} - L,
 +
$$
  
which has since received the name of [[Hamilton function|Hamilton function]] (or Hamiltonian). In the right-hand side of (2) the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462008.png" /> are replaced by the expressions
+
which has since received the name of [[Hamilton function|Hamilton function]] (or Hamiltonian). In the right-hand side of (2) the variables $  \dot{q} _ {i} $
 +
are replaced by the expressions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h0462009.png" /></td> </tr></table>
+
$$
 +
\dot{q} _ {i}  = \
 +
\phi _ {i} ( q _ {s} , p _ {s} , t),
 +
$$
  
 
obtained by solving the equations (1). For dynamical systems, in which
 
obtained by solving the equations (1). For dynamical systems, in which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620010.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm det}  \left \|
 +
 
 +
\frac{\partial  ^ {2} L }{\partial  \dot{q} _ {i} \partial  \dot{q} _ {j} }
 +
 
 +
\right \|  \neq  0,
 +
$$
  
 
such a solution always exists.
 
such a solution always exists.
Line 21: Line 58:
 
Hamilton's equations have the canonical form
 
Hamilton's equations have the canonical form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620012.png" /> denotes the non-potential generalized forces if these are acting on the system. The number of equations (3) is equal to the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620013.png" /> of unknowns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620014.png" />.
+
\frac{dq _ {i} }{dt}
 +
  = \
  
The order of the system (3) is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620015.png" />, which is equal to that of the system of second-order Lagrange equations.
+
\frac{\partial  H }{\partial  p _ {i} }
 +
,\ \
  
The transition from the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620016.png" /> and the Lagrange function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620017.png" /> to the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620018.png" /> and the Hamilton function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046200/h04620019.png" /> by the use of formulas (1) and (2) is given by the [[Legendre transform|Legendre transform]]. The Hamilton equations have certain advantages over the Lagrange equations; hence the important role they play in analytical mechanics. See also [[Hamiltonian system|Hamiltonian system]].
+
\frac{dp _ {i} }{dt}
 +
  = \
 +
-
 +
\frac{\partial  H }{\partial  q _ {i} }
 +
+
 +
Q _ {i}  ^ {*} ,\ \
 +
i = 1 \dots n.
 +
$$
 +
 
 +
Here  $  Q _ {i}  ^ {*} $
 +
denotes the non-potential generalized forces if these are acting on the system. The number of equations (3) is equal to the number  $  2n $
 +
of unknowns  $  q _ {i} , p _ {i} $.
 +
 
 +
The order of the system (3) is  $  2n $,
 +
which is equal to that of the system of second-order Lagrange equations.
 +
 
 +
The transition from the variables $  q _ {i} , \dot{q} _ {i} , t $
 +
and the Lagrange function $  L $
 +
to the variables $  q _ {i} , p _ {i} , t $
 +
and the Hamilton function $  H $
 +
by the use of formulas (1) and (2) is given by the [[Legendre transform|Legendre transform]]. The Hamilton equations have certain advantages over the Lagrange equations; hence the important role they play in analytical mechanics. See also [[Hamiltonian system|Hamiltonian system]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W.R. Hamilton,  ''Philos. Transact. Roy. Soc. London Ser. A'' , '''1'''  (1835)  pp. 95–144</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  W.R. Hamilton,  ''Philos. Transact. Roy. Soc. London Ser. A'' , '''1'''  (1835)  pp. 95–144</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.I. Arnol'd,  "Mathematical methods of classical mechanics" , Springer  (1978)  (Translated from Russian)</TD></TR></table>

Latest revision as of 19:43, 5 June 2020


Ordinary canonical first-order differential equations describing the motion of holonomic mechanical systems acted upon by external forces, as well as describing the extremals of problems of the classical calculus of variations.

Hamilton's equations, established by W. Hamilton [1], are equivalent to the second-order Lagrange equations (in mechanics) (or to the Euler equation in the classical calculus of variations), in which the unknown magnitudes are the generalized coordinates $ q _ {i} $ as well as the $ \dot{q} _ {i} = d q _ {i} / d t $. Hamilton replaced, in his considerations, the generalized velocities $ \dot{q} _ {i} $ by the generalized momenta

$$ \tag{1 } p _ {i} = \ \frac{\partial L }{\partial \dot{q} _ {i} } ,\ \ i = 1 \dots n, $$

where $ L ( q _ {i} , \dot{q} _ {i} , t) $ is the Lagrange function, $ n $ is the number of degrees of freedom of the system, and he defined the function

$$ \tag{2 } H ( q _ {i} , p _ {i} , t) = \ \sum _ {i = 1 } ^ { n } p _ {i} \dot{q} _ {i} - L, $$

which has since received the name of Hamilton function (or Hamiltonian). In the right-hand side of (2) the variables $ \dot{q} _ {i} $ are replaced by the expressions

$$ \dot{q} _ {i} = \ \phi _ {i} ( q _ {s} , p _ {s} , t), $$

obtained by solving the equations (1). For dynamical systems, in which

$$ \mathop{\rm det} \left \| \frac{\partial ^ {2} L }{\partial \dot{q} _ {i} \partial \dot{q} _ {j} } \right \| \neq 0, $$

such a solution always exists.

Hamilton's equations have the canonical form

$$ \tag{3 } \frac{dq _ {i} }{dt} = \ \frac{\partial H }{\partial p _ {i} } ,\ \ \frac{dp _ {i} }{dt} = \ - \frac{\partial H }{\partial q _ {i} } + Q _ {i} ^ {*} ,\ \ i = 1 \dots n. $$

Here $ Q _ {i} ^ {*} $ denotes the non-potential generalized forces if these are acting on the system. The number of equations (3) is equal to the number $ 2n $ of unknowns $ q _ {i} , p _ {i} $.

The order of the system (3) is $ 2n $, which is equal to that of the system of second-order Lagrange equations.

The transition from the variables $ q _ {i} , \dot{q} _ {i} , t $ and the Lagrange function $ L $ to the variables $ q _ {i} , p _ {i} , t $ and the Hamilton function $ H $ by the use of formulas (1) and (2) is given by the Legendre transform. The Hamilton equations have certain advantages over the Lagrange equations; hence the important role they play in analytical mechanics. See also Hamiltonian system.

References

[1] W.R. Hamilton, Philos. Transact. Roy. Soc. London Ser. A , 1 (1835) pp. 95–144

Comments

References

[a1] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)
How to Cite This Entry:
Hamilton equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hamilton_equations&oldid=15788
This article was adapted from an original article by V.V. Rumyantsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article