Namespaces
Variants
Actions

Difference between revisions of "Graded module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446701.png" /> that can be represented as the direct sum of its submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446702.png" /> (the index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446703.png" /> runs through all integers; some of the submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446704.png" /> may be trivial). A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446705.png" /> is called positively graded if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446706.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446707.png" />, and negatively graded if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446708.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g0446709.png" />. The non-zero elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467010.png" /> are called homogeneous elements of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467012.png" />. A submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467013.png" /> of a graded module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467014.png" /> is said to be homogeneous if it can be decomposed into a direct sum of submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467016.png" /> for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467017.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467018.png" /> is then a graded module. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467019.png" /> is a homogeneous submodule of a graded module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467020.png" />, then the quotient module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467021.png" /> is also a graded module, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467022.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467023.png" /> is the image of the submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467024.png" /> under the natural homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044670/g04467026.png" />. Graded modules are extensively used in homological algebra.
+
<!--
 +
g0446701.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/G044/G.0404670 Graded module
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A module  $  A $
 +
that can be represented as the direct sum of its submodules $  A _ {n} $(
 +
the index $  n $
 +
runs through all integers; some of the submodules $  A _ {n} $
 +
may be trivial). A module $  A $
 +
is called positively graded if $  A _ {n} = 0 $
 +
for all $  n < 0 $,  
 +
and negatively graded if $  A _ {n} = 0 $
 +
for all $  n > 0 $.  
 +
The non-zero elements of $  A _ {n} $
 +
are called homogeneous elements of degree $  n $.  
 +
A submodule $  B $
 +
of a graded module $  A $
 +
is said to be homogeneous if it can be decomposed into a direct sum of submodules $  B _ {n} $
 +
such that $  B _ {n} \subseteq A _ {n} $
 +
for any integer $  n $;  
 +
$  B $
 +
is then a graded module. If $  B $
 +
is a homogeneous submodule of a graded module $  A $,  
 +
then the quotient module $  \overline{A}\; = A/B $
 +
is also a graded module, i.e. $  \overline{A}\; = \sum \overline{A}\; _ {n} $,  
 +
where $  \overline{A}\; _ {n} $
 +
is the image of the submodule $  A _ {n} $
 +
under the natural homomorphism $  A \rightarrow A/B $,  
 +
$  \overline{A}\; _ {n} \simeq A _ {n} /B _ {n} $.  
 +
Graded modules are extensively used in homological algebra.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 19:42, 5 June 2020


A module $ A $ that can be represented as the direct sum of its submodules $ A _ {n} $( the index $ n $ runs through all integers; some of the submodules $ A _ {n} $ may be trivial). A module $ A $ is called positively graded if $ A _ {n} = 0 $ for all $ n < 0 $, and negatively graded if $ A _ {n} = 0 $ for all $ n > 0 $. The non-zero elements of $ A _ {n} $ are called homogeneous elements of degree $ n $. A submodule $ B $ of a graded module $ A $ is said to be homogeneous if it can be decomposed into a direct sum of submodules $ B _ {n} $ such that $ B _ {n} \subseteq A _ {n} $ for any integer $ n $; $ B $ is then a graded module. If $ B $ is a homogeneous submodule of a graded module $ A $, then the quotient module $ \overline{A}\; = A/B $ is also a graded module, i.e. $ \overline{A}\; = \sum \overline{A}\; _ {n} $, where $ \overline{A}\; _ {n} $ is the image of the submodule $ A _ {n} $ under the natural homomorphism $ A \rightarrow A/B $, $ \overline{A}\; _ {n} \simeq A _ {n} /B _ {n} $. Graded modules are extensively used in homological algebra.

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)

Comments

A linear mapping between graded modules is a graded morphism if it respects the degree of homogeneous elements. The category of graded modules and graded morphisms is a Grothendieck category. Gradations by arbitrary groups may be introduced in a similar way. The gradations by the integers play an important role in the theory of projective algebraic varieties or schemes.

References

[a1] C. Nâstâsescu, F. van Oystaeyen, "Graded ring theory" , North-Holland (1982)
How to Cite This Entry:
Graded module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Graded_module&oldid=12176
This article was adapted from an original article by E.N. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article