Difference between revisions of "Graded module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | g0446701.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/G044/G.0404670 Graded module | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A module $ A $ | ||
+ | that can be represented as the direct sum of its submodules $ A _ {n} $( | ||
+ | the index $ n $ | ||
+ | runs through all integers; some of the submodules $ A _ {n} $ | ||
+ | may be trivial). A module $ A $ | ||
+ | is called positively graded if $ A _ {n} = 0 $ | ||
+ | for all $ n < 0 $, | ||
+ | and negatively graded if $ A _ {n} = 0 $ | ||
+ | for all $ n > 0 $. | ||
+ | The non-zero elements of $ A _ {n} $ | ||
+ | are called homogeneous elements of degree $ n $. | ||
+ | A submodule $ B $ | ||
+ | of a graded module $ A $ | ||
+ | is said to be homogeneous if it can be decomposed into a direct sum of submodules $ B _ {n} $ | ||
+ | such that $ B _ {n} \subseteq A _ {n} $ | ||
+ | for any integer $ n $; | ||
+ | $ B $ | ||
+ | is then a graded module. If $ B $ | ||
+ | is a homogeneous submodule of a graded module $ A $, | ||
+ | then the quotient module $ \overline{A}\; = A/B $ | ||
+ | is also a graded module, i.e. $ \overline{A}\; = \sum \overline{A}\; _ {n} $, | ||
+ | where $ \overline{A}\; _ {n} $ | ||
+ | is the image of the submodule $ A _ {n} $ | ||
+ | under the natural homomorphism $ A \rightarrow A/B $, | ||
+ | $ \overline{A}\; _ {n} \simeq A _ {n} /B _ {n} $. | ||
+ | Graded modules are extensively used in homological algebra. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 19:42, 5 June 2020
A module $ A $
that can be represented as the direct sum of its submodules $ A _ {n} $(
the index $ n $
runs through all integers; some of the submodules $ A _ {n} $
may be trivial). A module $ A $
is called positively graded if $ A _ {n} = 0 $
for all $ n < 0 $,
and negatively graded if $ A _ {n} = 0 $
for all $ n > 0 $.
The non-zero elements of $ A _ {n} $
are called homogeneous elements of degree $ n $.
A submodule $ B $
of a graded module $ A $
is said to be homogeneous if it can be decomposed into a direct sum of submodules $ B _ {n} $
such that $ B _ {n} \subseteq A _ {n} $
for any integer $ n $;
$ B $
is then a graded module. If $ B $
is a homogeneous submodule of a graded module $ A $,
then the quotient module $ \overline{A}\; = A/B $
is also a graded module, i.e. $ \overline{A}\; = \sum \overline{A}\; _ {n} $,
where $ \overline{A}\; _ {n} $
is the image of the submodule $ A _ {n} $
under the natural homomorphism $ A \rightarrow A/B $,
$ \overline{A}\; _ {n} \simeq A _ {n} /B _ {n} $.
Graded modules are extensively used in homological algebra.
References
[1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
Comments
A linear mapping between graded modules is a graded morphism if it respects the degree of homogeneous elements. The category of graded modules and graded morphisms is a Grothendieck category. Gradations by arbitrary groups may be introduced in a similar way. The gradations by the integers play an important role in the theory of projective algebraic varieties or schemes.
References
[a1] | C. Nâstâsescu, F. van Oystaeyen, "Graded ring theory" , North-Holland (1982) |
Graded module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Graded_module&oldid=12176