Namespaces
Variants
Actions

Difference between revisions of "Glueing"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
Glueing in differential topology, algebraic and analytic geometry, etc. is a frequently used method to construct global objects such as varieties, schemes, differentiable manifolds, vector bundles, sheaves<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444801.png" /> from local pieces from some category of local models together with glueing data.
+
<!--
 +
g0444801.png
 +
$#A+1 = 47 n = 0
 +
$#C+1 = 47 : ~/encyclopedia/old_files/data/G044/G.0404480 Glueing
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Consider, for example, the case of differentiable manifolds of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444802.png" />. In this case the local model category consists of open sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444803.png" /> and differentiable mappings. A local-pieces-and-glueing-data description of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444804.png" />-dimensional differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444805.png" /> now consists of the following:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
i) a collection of open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444806.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444807.png" /> indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444808.png" />;
+
Glueing in differential topology, algebraic and analytic geometry, etc. is a frequently used method to construct global objects such as varieties, schemes, differentiable manifolds, vector bundles, sheaves $  \dots $
 +
from local pieces from some category of local models together with glueing data.
  
ii) for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g0444809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448010.png" /> open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448012.png" /> together with a diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448013.png" />.
+
Consider, for example, the case of differentiable manifolds of dimension  $  n $.  
 +
In this case the local model category consists of open sets in  $  \mathbf R  ^ {n} $
 +
and differentiable mappings. A local-pieces-and-glueing-data description of an  $  n $-
 +
dimensional differentiable manifold  $  M $
 +
now consists of the following:
  
The glueing data <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448014.png" /> are subject to the following consistency conditions:
+
i) a collection of open subsets  $  ( U _  \alpha  ) $
 +
of  $  \mathbf R  ^ {n} $
 +
indexed by  $  \alpha \in A $;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448016.png" />;
+
ii) for each  $  \alpha $
 +
and  $  \beta $
 +
open subsets  $  U _ {\alpha \beta }  \subset  U _  \alpha  $
 +
and  $  U _ {\beta \alpha }  \subset  U _  \beta  $
 +
together with a diffeomorphism  $  \phi _ {\alpha \beta }  : U _ {\alpha \beta }  \rightarrow U _ {\beta \alpha }  $.
  
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448017.png" />;
+
The glueing data  $  \phi _ {\alpha \beta }  $
 +
are subject to the following consistency conditions:
  
v) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448019.png" />.
+
iii) $  U _ {\alpha \alpha }  = U _  \alpha  $,
 +
$  \phi _ {\alpha \alpha }  = \mathop{\rm id} $;
  
From these data one constructs a locally Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448020.png" /> by taking the disjoint union, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448021.png" />, of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448022.png" /> modulo the equivalence relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448023.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448026.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448027.png" />. If the resulting topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448028.png" /> is Hausdorff and paracompact, then a differentiable manifold is obtained. Both these properties do not follow from the construction. Local coordinate systems are obtained from (the inverses of) the natural mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448029.png" />.
+
iv) $  \phi _ {\alpha \beta }  = \phi _ {\beta \alpha }  ^ {-} 1 $;
  
For (pre-)schemes the local model category is that of affine schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448030.png" /> and morphisms of schemes between them. Cf. [[Scheme|Scheme]]. Here also global separation properties must be added to obtain a scheme. For vector bundles the local model category is that of trivial vector bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448032.png" />, and vector bundle morphisms between such trivial vector bundles, i.e. differentiable mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448033.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448035.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448036.png" /> matrix smoothly depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448037.png" />. Cf. [[Vector bundle|Vector bundle]].
+
v) $  \phi _ {\beta \gamma }  \phi _ {\alpha \beta }  = \phi _ {\alpha \gamma }  $
 +
on $  U _ {\alpha \gamma }  \cap U _ {\alpha \beta }  $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448038.png" /> is a [[Differentiable manifold|differentiable manifold]] with a covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448039.png" /> by coordinate neighbourhoods and corresponding coordinate systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448040.png" />, then the corresponding local-pieces-and-glueing-data description of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448041.png" /> is as follows. The local pieces are the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448042.png" />. The open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448043.png" /> are equal to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448044.png" /> and the glueing data <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448045.png" /> are the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448046.png" /> restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044480/g04448047.png" />. Thus, the description of a manifold by means of an atlas and the description by means of local pieces and glueing data are quite close to one another.
+
From these data one constructs a locally Euclidean space  $  M $
 +
by taking the disjoint union,  $  \amalg U _  \alpha  $,
 +
of the  $  U _  \alpha  $
 +
modulo the equivalence relation  $  x \sim y $
 +
if  $  x \in U _ {\alpha \beta }  $,
 +
$  y \in U _ {\beta \alpha }  $
 +
and  $  \phi _ {\alpha \beta }  ( x) = y $
 +
for some  $  \alpha , \beta $.
 +
If the resulting topological space  $  M = \amalg U _  \alpha  / \sim $
 +
is Hausdorff and paracompact, then a differentiable manifold is obtained. Both these properties do not follow from the construction. Local coordinate systems are obtained from (the inverses of) the natural mappings  $  U _  \alpha  \rightarrow \amalg U _  \alpha  \rightarrow M $.
 +
 
 +
For (pre-)schemes the local model category is that of affine schemes  $  \mathop{\rm Spec} ( A) $
 +
and morphisms of schemes between them. Cf. [[Scheme|Scheme]]. Here also global separation properties must be added to obtain a scheme. For vector bundles the local model category is that of trivial vector bundles  $  U \times \mathbf R  ^ {m} \rightarrow U $,
 +
$  U \subset  \mathbf R  ^ {n} $,
 +
and vector bundle morphisms between such trivial vector bundles, i.e. differentiable mappings  $  U \times \mathbf R  ^ {m} \rightarrow V \times \mathbf R  ^ {m} $
 +
of the form  $  ( x, v) \mapsto ( \phi ( x), A ( x) v) $,
 +
where  $  A ( x) $
 +
is an  $  m \times m $
 +
matrix smoothly depending on  $  x $.  
 +
Cf. [[Vector bundle|Vector bundle]].
 +
 
 +
If  $  M $
 +
is a [[Differentiable manifold|differentiable manifold]] with a covering $  ( V _  \alpha  ) $
 +
by coordinate neighbourhoods and corresponding coordinate systems $  \psi _  \alpha  : V _  \alpha  \rightarrow \mathbf R  ^ {n} $,  
 +
then the corresponding local-pieces-and-glueing-data description of $  M $
 +
is as follows. The local pieces are the $  U _  \alpha  = \psi _  \alpha  ( V _  \alpha  ) $.  
 +
The open subsets $  U _ {\alpha \beta }  $
 +
are equal to the $  \psi _  \alpha  ( V _  \alpha  \cap V _  \beta  ) $
 +
and the glueing data $  \phi _ {\alpha \beta }  : U _ {\alpha \beta }  \rightarrow U _ {\beta \alpha }  $
 +
are the mappings $  \psi _  \beta  \psi _  \alpha  ^ {-} 1 $
 +
restricted to $  \psi _  \alpha  ( V _  \alpha  \cap V _  \beta  ) $.  
 +
Thus, the description of a manifold by means of an atlas and the description by means of local pieces and glueing data are quite close to one another.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Grothendieck,  "Elements de géométrie algébrique I" , IHES  (1960)  pp. Sect. 0.4.1.7</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Hazewinkel,  "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds"  W. Schiehlen (ed.)  W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien)  (1988)  pp. 316–340</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Grothendieck,  "Elements de géométrie algébrique I" , IHES  (1960)  pp. Sect. 0.4.1.7</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Hazewinkel,  "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds"  W. Schiehlen (ed.)  W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien)  (1988)  pp. 316–340</TD></TR></table>

Revision as of 19:42, 5 June 2020


Glueing in differential topology, algebraic and analytic geometry, etc. is a frequently used method to construct global objects such as varieties, schemes, differentiable manifolds, vector bundles, sheaves $ \dots $ from local pieces from some category of local models together with glueing data.

Consider, for example, the case of differentiable manifolds of dimension $ n $. In this case the local model category consists of open sets in $ \mathbf R ^ {n} $ and differentiable mappings. A local-pieces-and-glueing-data description of an $ n $- dimensional differentiable manifold $ M $ now consists of the following:

i) a collection of open subsets $ ( U _ \alpha ) $ of $ \mathbf R ^ {n} $ indexed by $ \alpha \in A $;

ii) for each $ \alpha $ and $ \beta $ open subsets $ U _ {\alpha \beta } \subset U _ \alpha $ and $ U _ {\beta \alpha } \subset U _ \beta $ together with a diffeomorphism $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $.

The glueing data $ \phi _ {\alpha \beta } $ are subject to the following consistency conditions:

iii) $ U _ {\alpha \alpha } = U _ \alpha $, $ \phi _ {\alpha \alpha } = \mathop{\rm id} $;

iv) $ \phi _ {\alpha \beta } = \phi _ {\beta \alpha } ^ {-} 1 $;

v) $ \phi _ {\beta \gamma } \phi _ {\alpha \beta } = \phi _ {\alpha \gamma } $ on $ U _ {\alpha \gamma } \cap U _ {\alpha \beta } $.

From these data one constructs a locally Euclidean space $ M $ by taking the disjoint union, $ \amalg U _ \alpha $, of the $ U _ \alpha $ modulo the equivalence relation $ x \sim y $ if $ x \in U _ {\alpha \beta } $, $ y \in U _ {\beta \alpha } $ and $ \phi _ {\alpha \beta } ( x) = y $ for some $ \alpha , \beta $. If the resulting topological space $ M = \amalg U _ \alpha / \sim $ is Hausdorff and paracompact, then a differentiable manifold is obtained. Both these properties do not follow from the construction. Local coordinate systems are obtained from (the inverses of) the natural mappings $ U _ \alpha \rightarrow \amalg U _ \alpha \rightarrow M $.

For (pre-)schemes the local model category is that of affine schemes $ \mathop{\rm Spec} ( A) $ and morphisms of schemes between them. Cf. Scheme. Here also global separation properties must be added to obtain a scheme. For vector bundles the local model category is that of trivial vector bundles $ U \times \mathbf R ^ {m} \rightarrow U $, $ U \subset \mathbf R ^ {n} $, and vector bundle morphisms between such trivial vector bundles, i.e. differentiable mappings $ U \times \mathbf R ^ {m} \rightarrow V \times \mathbf R ^ {m} $ of the form $ ( x, v) \mapsto ( \phi ( x), A ( x) v) $, where $ A ( x) $ is an $ m \times m $ matrix smoothly depending on $ x $. Cf. Vector bundle.

If $ M $ is a differentiable manifold with a covering $ ( V _ \alpha ) $ by coordinate neighbourhoods and corresponding coordinate systems $ \psi _ \alpha : V _ \alpha \rightarrow \mathbf R ^ {n} $, then the corresponding local-pieces-and-glueing-data description of $ M $ is as follows. The local pieces are the $ U _ \alpha = \psi _ \alpha ( V _ \alpha ) $. The open subsets $ U _ {\alpha \beta } $ are equal to the $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $ and the glueing data $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $ are the mappings $ \psi _ \beta \psi _ \alpha ^ {-} 1 $ restricted to $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $. Thus, the description of a manifold by means of an atlas and the description by means of local pieces and glueing data are quite close to one another.

References

[a1] A. Grothendieck, "Elements de géométrie algébrique I" , IHES (1960) pp. Sect. 0.4.1.7
[a2] M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 316–340
How to Cite This Entry:
Glueing. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Glueing&oldid=15657