Difference between revisions of "Glueing"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0444801.png | ||
+ | $#A+1 = 47 n = 0 | ||
+ | $#C+1 = 47 : ~/encyclopedia/old_files/data/G044/G.0404480 Glueing | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Glueing in differential topology, algebraic and analytic geometry, etc. is a frequently used method to construct global objects such as varieties, schemes, differentiable manifolds, vector bundles, sheaves $ \dots $ | |
+ | from local pieces from some category of local models together with glueing data. | ||
− | + | Consider, for example, the case of differentiable manifolds of dimension $ n $. | |
+ | In this case the local model category consists of open sets in $ \mathbf R ^ {n} $ | ||
+ | and differentiable mappings. A local-pieces-and-glueing-data description of an $ n $- | ||
+ | dimensional differentiable manifold $ M $ | ||
+ | now consists of the following: | ||
− | + | i) a collection of open subsets $ ( U _ \alpha ) $ | |
+ | of $ \mathbf R ^ {n} $ | ||
+ | indexed by $ \alpha \in A $; | ||
− | + | ii) for each $ \alpha $ | |
+ | and $ \beta $ | ||
+ | open subsets $ U _ {\alpha \beta } \subset U _ \alpha $ | ||
+ | and $ U _ {\beta \alpha } \subset U _ \beta $ | ||
+ | together with a diffeomorphism $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $. | ||
− | + | The glueing data $ \phi _ {\alpha \beta } $ | |
+ | are subject to the following consistency conditions: | ||
− | + | iii) $ U _ {\alpha \alpha } = U _ \alpha $, | |
+ | $ \phi _ {\alpha \alpha } = \mathop{\rm id} $; | ||
− | + | iv) $ \phi _ {\alpha \beta } = \phi _ {\beta \alpha } ^ {-} 1 $; | |
− | + | v) $ \phi _ {\beta \gamma } \phi _ {\alpha \beta } = \phi _ {\alpha \gamma } $ | |
+ | on $ U _ {\alpha \gamma } \cap U _ {\alpha \beta } $. | ||
− | If | + | From these data one constructs a locally Euclidean space $ M $ |
+ | by taking the disjoint union, $ \amalg U _ \alpha $, | ||
+ | of the $ U _ \alpha $ | ||
+ | modulo the equivalence relation $ x \sim y $ | ||
+ | if $ x \in U _ {\alpha \beta } $, | ||
+ | $ y \in U _ {\beta \alpha } $ | ||
+ | and $ \phi _ {\alpha \beta } ( x) = y $ | ||
+ | for some $ \alpha , \beta $. | ||
+ | If the resulting topological space $ M = \amalg U _ \alpha / \sim $ | ||
+ | is Hausdorff and paracompact, then a differentiable manifold is obtained. Both these properties do not follow from the construction. Local coordinate systems are obtained from (the inverses of) the natural mappings $ U _ \alpha \rightarrow \amalg U _ \alpha \rightarrow M $. | ||
+ | |||
+ | For (pre-)schemes the local model category is that of affine schemes $ \mathop{\rm Spec} ( A) $ | ||
+ | and morphisms of schemes between them. Cf. [[Scheme|Scheme]]. Here also global separation properties must be added to obtain a scheme. For vector bundles the local model category is that of trivial vector bundles $ U \times \mathbf R ^ {m} \rightarrow U $, | ||
+ | $ U \subset \mathbf R ^ {n} $, | ||
+ | and vector bundle morphisms between such trivial vector bundles, i.e. differentiable mappings $ U \times \mathbf R ^ {m} \rightarrow V \times \mathbf R ^ {m} $ | ||
+ | of the form $ ( x, v) \mapsto ( \phi ( x), A ( x) v) $, | ||
+ | where $ A ( x) $ | ||
+ | is an $ m \times m $ | ||
+ | matrix smoothly depending on $ x $. | ||
+ | Cf. [[Vector bundle|Vector bundle]]. | ||
+ | |||
+ | If $ M $ | ||
+ | is a [[Differentiable manifold|differentiable manifold]] with a covering $ ( V _ \alpha ) $ | ||
+ | by coordinate neighbourhoods and corresponding coordinate systems $ \psi _ \alpha : V _ \alpha \rightarrow \mathbf R ^ {n} $, | ||
+ | then the corresponding local-pieces-and-glueing-data description of $ M $ | ||
+ | is as follows. The local pieces are the $ U _ \alpha = \psi _ \alpha ( V _ \alpha ) $. | ||
+ | The open subsets $ U _ {\alpha \beta } $ | ||
+ | are equal to the $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $ | ||
+ | and the glueing data $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $ | ||
+ | are the mappings $ \psi _ \beta \psi _ \alpha ^ {-} 1 $ | ||
+ | restricted to $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $. | ||
+ | Thus, the description of a manifold by means of an atlas and the description by means of local pieces and glueing data are quite close to one another. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck, "Elements de géométrie algébrique I" , IHES (1960) pp. Sect. 0.4.1.7</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 316–340</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck, "Elements de géométrie algébrique I" , IHES (1960) pp. Sect. 0.4.1.7</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , ''Analysis and estimation of stochastic mechanical systems'' , Springer (Wien) (1988) pp. 316–340</TD></TR></table> |
Revision as of 19:42, 5 June 2020
Glueing in differential topology, algebraic and analytic geometry, etc. is a frequently used method to construct global objects such as varieties, schemes, differentiable manifolds, vector bundles, sheaves $ \dots $
from local pieces from some category of local models together with glueing data.
Consider, for example, the case of differentiable manifolds of dimension $ n $. In this case the local model category consists of open sets in $ \mathbf R ^ {n} $ and differentiable mappings. A local-pieces-and-glueing-data description of an $ n $- dimensional differentiable manifold $ M $ now consists of the following:
i) a collection of open subsets $ ( U _ \alpha ) $ of $ \mathbf R ^ {n} $ indexed by $ \alpha \in A $;
ii) for each $ \alpha $ and $ \beta $ open subsets $ U _ {\alpha \beta } \subset U _ \alpha $ and $ U _ {\beta \alpha } \subset U _ \beta $ together with a diffeomorphism $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $.
The glueing data $ \phi _ {\alpha \beta } $ are subject to the following consistency conditions:
iii) $ U _ {\alpha \alpha } = U _ \alpha $, $ \phi _ {\alpha \alpha } = \mathop{\rm id} $;
iv) $ \phi _ {\alpha \beta } = \phi _ {\beta \alpha } ^ {-} 1 $;
v) $ \phi _ {\beta \gamma } \phi _ {\alpha \beta } = \phi _ {\alpha \gamma } $ on $ U _ {\alpha \gamma } \cap U _ {\alpha \beta } $.
From these data one constructs a locally Euclidean space $ M $ by taking the disjoint union, $ \amalg U _ \alpha $, of the $ U _ \alpha $ modulo the equivalence relation $ x \sim y $ if $ x \in U _ {\alpha \beta } $, $ y \in U _ {\beta \alpha } $ and $ \phi _ {\alpha \beta } ( x) = y $ for some $ \alpha , \beta $. If the resulting topological space $ M = \amalg U _ \alpha / \sim $ is Hausdorff and paracompact, then a differentiable manifold is obtained. Both these properties do not follow from the construction. Local coordinate systems are obtained from (the inverses of) the natural mappings $ U _ \alpha \rightarrow \amalg U _ \alpha \rightarrow M $.
For (pre-)schemes the local model category is that of affine schemes $ \mathop{\rm Spec} ( A) $ and morphisms of schemes between them. Cf. Scheme. Here also global separation properties must be added to obtain a scheme. For vector bundles the local model category is that of trivial vector bundles $ U \times \mathbf R ^ {m} \rightarrow U $, $ U \subset \mathbf R ^ {n} $, and vector bundle morphisms between such trivial vector bundles, i.e. differentiable mappings $ U \times \mathbf R ^ {m} \rightarrow V \times \mathbf R ^ {m} $ of the form $ ( x, v) \mapsto ( \phi ( x), A ( x) v) $, where $ A ( x) $ is an $ m \times m $ matrix smoothly depending on $ x $. Cf. Vector bundle.
If $ M $ is a differentiable manifold with a covering $ ( V _ \alpha ) $ by coordinate neighbourhoods and corresponding coordinate systems $ \psi _ \alpha : V _ \alpha \rightarrow \mathbf R ^ {n} $, then the corresponding local-pieces-and-glueing-data description of $ M $ is as follows. The local pieces are the $ U _ \alpha = \psi _ \alpha ( V _ \alpha ) $. The open subsets $ U _ {\alpha \beta } $ are equal to the $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $ and the glueing data $ \phi _ {\alpha \beta } : U _ {\alpha \beta } \rightarrow U _ {\beta \alpha } $ are the mappings $ \psi _ \beta \psi _ \alpha ^ {-} 1 $ restricted to $ \psi _ \alpha ( V _ \alpha \cap V _ \beta ) $. Thus, the description of a manifold by means of an atlas and the description by means of local pieces and glueing data are quite close to one another.
References
[a1] | A. Grothendieck, "Elements de géométrie algébrique I" , IHES (1960) pp. Sect. 0.4.1.7 |
[a2] | M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on differentiable manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 316–340 |
Glueing. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Glueing&oldid=15657