Namespaces
Variants
Actions

Difference between revisions of "Gini average difference"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A magnitude characterizing the [[Dispersion|dispersion]] of the values of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444301.png" />. It was introduced by C. Gini in 1912 and is defined by the formula
+
<!--
 +
g0444301.png
 +
$#A+1 = 6 n = 0
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/G044/G.0404430 Gini average difference
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444302.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444303.png" /> is the distribution function of the random variable. Another variable which is also occasionally considered is the Gini dispersion coefficient
+
A magnitude characterizing the [[Dispersion|dispersion]] of the values of a random variable $  X $.
 +
It was introduced by C. Gini in 1912 and is defined by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444304.png" /></td> </tr></table>
+
$$
 +
\Delta  = \int\limits _ {- \infty } ^  \infty  \int\limits _ {- \infty } ^  \infty 
 +
| x - y |  dF ( x)  dF ( y) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444305.png" /> is the [[Mathematical expectation|mathematical expectation]] of the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044430/g0444306.png" />.
+
where $  F ( \cdot ) $
 +
is the distribution function of the random variable. Another variable which is also occasionally considered is the Gini dispersion coefficient
 +
 
 +
$$
 +
=
 +
\frac \Delta {2 \mu }
 +
,
 +
$$
 +
 
 +
where  $  \mu $
 +
is the [[Mathematical expectation|mathematical expectation]] of the random variable $  X $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.G. Kendall,  A. Stuart,  "The advanced theory of statistics. Distribution theory" , '''3. Design and analysis''' , Griffin  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.G. Kendall,  A. Stuart,  "The advanced theory of statistics. Distribution theory" , '''3. Design and analysis''' , Griffin  (1969)</TD></TR></table>

Latest revision as of 19:42, 5 June 2020


A magnitude characterizing the dispersion of the values of a random variable $ X $. It was introduced by C. Gini in 1912 and is defined by the formula

$$ \Delta = \int\limits _ {- \infty } ^ \infty \int\limits _ {- \infty } ^ \infty | x - y | dF ( x) dF ( y) , $$

where $ F ( \cdot ) $ is the distribution function of the random variable. Another variable which is also occasionally considered is the Gini dispersion coefficient

$$ G = \frac \Delta {2 \mu } , $$

where $ \mu $ is the mathematical expectation of the random variable $ X $.

References

[1] M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , 3. Design and analysis , Griffin (1969)
How to Cite This Entry:
Gini average difference. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gini_average_difference&oldid=13742
This article was adapted from an original article by K.P. Latyshev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article