Namespaces
Variants
Actions

Difference between revisions of "General integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436701.png" /> ordinary differential equations
+
<!--
 +
g0436701.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/G043/G.0403670 General integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436702.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436703.png" />''
+
''of a system of  $  n $
 +
ordinary differential equations
  
The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436704.png" /> relations
+
$$ \tag{1 }
 +
x _ {i}  ^  \prime  = f _ {i} ( t , x _ {1} \dots x _ {n} ) ,\ \
 +
i = 1 \dots n ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436705.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
in a domain  $  G $''
  
containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436706.png" /> parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436707.png" />, and describing in implicit form the family of functions forming the [[General solution|general solution]] of this system in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436708.png" />. Often the set of functions
+
The set of $  n $
 +
relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g0436709.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{2 }
 +
\Phi _ {i} ( t _ {i} , x _ {1} \dots x _ {n} )  = C _ {i} ,\ \
 +
i = 1 \dots n ,
 +
$$
 +
 
 +
containing  $  n $
 +
parameters  $  ( C _ {1} \dots C _ {n} ) \in C \subset  \mathbf R  ^ {n} $,
 +
and describing in implicit form the family of functions forming the [[General solution|general solution]] of this system in the domain  $  G $.  
 +
Often the set of functions
 +
 
 +
$$ \tag{3 }
 +
\Phi _ {i} ( t , x _ {1} \dots x _ {n} ) ,\ \
 +
i = 1 \dots n ,
 +
$$
  
 
is called the general integral of , rather than the equations (2). Each of the equations (2) (or each function (3)) is called a [[First integral|first integral]] of . Sometimes a general integral of
 
is called the general integral of , rather than the equations (2). Each of the equations (2) (or each function (3)) is called a [[First integral|first integral]] of . Sometimes a general integral of
Line 17: Line 43:
 
means a more general set of equations than (2),
 
means a more general set of equations than (2),
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367010.png" /></td> </tr></table>
+
$$
 +
\Phi _ {i} ( t , x _ {1} \dots x _ {n} , C _ {1} \dots C _ {n} )  = 0
 +
,\  i = 1 \dots n .
 +
$$
  
For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367011.png" />-th order ordinary differential equation
+
For an $  n $-
 +
th order ordinary differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367012.png" /></td> </tr></table>
+
$$
 +
y  ^ {(} n)  = f ( x , y , y  ^  \prime  \dots y  ^ {(} n- 1) )
 +
$$
  
a general integral is a single relation with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367013.png" /> parameters,
+
a general integral is a single relation with $  n $
 +
parameters,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367014.png" /></td> </tr></table>
+
$$
 +
\Phi ( x , y , C _ {1} \dots C _ {n} )  = 0 ,
 +
$$
  
describing the general solution of this equation in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043670/g04367015.png" /> in the form of an implicit function.
+
describing the general solution of this equation in the domain $  G $
 +
in the form of an implicit function.
  
 
A general integral of a first-order partial differential equation is a relation between the variables in the equation involving one arbitrary function such that the equation is satisfied when the relation is substituted in it, for every choice of the arbitrary function.
 
A general integral of a first-order partial differential equation is a relation between the variables in the equation involving one arbitrary function such that the equation is satisfied when the relation is substituted in it, for every choice of the arbitrary function.

Latest revision as of 19:41, 5 June 2020


of a system of $ n $ ordinary differential equations

$$ \tag{1 } x _ {i} ^ \prime = f _ {i} ( t , x _ {1} \dots x _ {n} ) ,\ \ i = 1 \dots n , $$

in a domain $ G $

The set of $ n $ relations

$$ \tag{2 } \Phi _ {i} ( t _ {i} , x _ {1} \dots x _ {n} ) = C _ {i} ,\ \ i = 1 \dots n , $$

containing $ n $ parameters $ ( C _ {1} \dots C _ {n} ) \in C \subset \mathbf R ^ {n} $, and describing in implicit form the family of functions forming the general solution of this system in the domain $ G $. Often the set of functions

$$ \tag{3 } \Phi _ {i} ( t , x _ {1} \dots x _ {n} ) ,\ \ i = 1 \dots n , $$

is called the general integral of , rather than the equations (2). Each of the equations (2) (or each function (3)) is called a first integral of . Sometimes a general integral of

means a more general set of equations than (2),

$$ \Phi _ {i} ( t , x _ {1} \dots x _ {n} , C _ {1} \dots C _ {n} ) = 0 ,\ i = 1 \dots n . $$

For an $ n $- th order ordinary differential equation

$$ y ^ {(} n) = f ( x , y , y ^ \prime \dots y ^ {(} n- 1) ) $$

a general integral is a single relation with $ n $ parameters,

$$ \Phi ( x , y , C _ {1} \dots C _ {n} ) = 0 , $$

describing the general solution of this equation in the domain $ G $ in the form of an implicit function.

A general integral of a first-order partial differential equation is a relation between the variables in the equation involving one arbitrary function such that the equation is satisfied when the relation is substituted in it, for every choice of the arbitrary function.

See also Integral of a differential equation.

For references see General solution.

How to Cite This Entry:
General integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=General_integral&oldid=15943
This article was adapted from an original article by N.Kh. Rozov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article