Difference between revisions of "Gauss transform"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0435601.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/G043/G.0403560 Gauss transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The linear functional transform $ W ( \zeta ) [ x] $ | |
+ | of a function $ x( t) $ | ||
+ | defined by the integral | ||
− | + | $$ | |
+ | W ( \zeta ) [ x] = \ | ||
− | + | \frac{1}{\sqrt {\pi \zeta } } | |
− | If | + | \int\limits _ {- \infty } ^ \infty |
+ | \mathop{\rm exp} \left ( - | ||
+ | \frac{u ^ {2} } \zeta | ||
+ | \right ) | ||
+ | x ( t + u) du, | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm Re} \zeta > 0. | ||
+ | $$ | ||
+ | |||
+ | If $ x( t) \in L _ {2} ( - \infty , \infty ) $, | ||
+ | then $ W ( \zeta ) [ x] \in L _ {2} ( - \infty , \infty ) $; | ||
+ | for real values $ \zeta = \overline \zeta \; $, | ||
+ | the operator $ W ( \zeta ) $ | ||
+ | is self-adjoint [[#References|[1]]]. The inversion formula for the Gauss transform is | ||
+ | |||
+ | $$ | ||
+ | x ( t) = \mathop{\rm exp} \left \{ - { | ||
+ | \frac \zeta {4} | ||
+ | } | ||
+ | |||
+ | \frac{d ^ {2} }{dt ^ {2} } | ||
+ | |||
+ | \right \} W ( \zeta ) [ x ( t)]. | ||
+ | $$ | ||
+ | |||
+ | If $ \zeta = 4 $, | ||
+ | the Gauss transform is known as the Weierstrass transform. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Integral transforms" ''Itogi Nauk. Ser. Mat. Mat. Anal.'' (1966) pp. 7–82 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Integral transforms" ''Itogi Nauk. Ser. Mat. Mat. Anal.'' (1966) pp. 7–82 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The above inversion formula can be interpreted in terms of semi-groups. Another way to invert the Gauss transform is to write in the first equation | + | The above inversion formula can be interpreted in terms of semi-groups. Another way to invert the Gauss transform is to write in the first equation $ t + u = v $, |
+ | from which substitution a double-sided [[Laplace transform|Laplace transform]] results. Then the inversion formula follows from well-known Laplace-transform techniques. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972)</TD></TR></table> |
Latest revision as of 19:41, 5 June 2020
The linear functional transform $ W ( \zeta ) [ x] $
of a function $ x( t) $
defined by the integral
$$ W ( \zeta ) [ x] = \ \frac{1}{\sqrt {\pi \zeta } } \int\limits _ {- \infty } ^ \infty \mathop{\rm exp} \left ( - \frac{u ^ {2} } \zeta \right ) x ( t + u) du, $$
$$ \mathop{\rm Re} \zeta > 0. $$
If $ x( t) \in L _ {2} ( - \infty , \infty ) $, then $ W ( \zeta ) [ x] \in L _ {2} ( - \infty , \infty ) $; for real values $ \zeta = \overline \zeta \; $, the operator $ W ( \zeta ) $ is self-adjoint [1]. The inversion formula for the Gauss transform is
$$ x ( t) = \mathop{\rm exp} \left \{ - { \frac \zeta {4} } \frac{d ^ {2} }{dt ^ {2} } \right \} W ( \zeta ) [ x ( t)]. $$
If $ \zeta = 4 $, the Gauss transform is known as the Weierstrass transform.
References
[1] | E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) |
[2] | V.A. Ditkin, A.P. Prudnikov, "Integral transforms" Itogi Nauk. Ser. Mat. Mat. Anal. (1966) pp. 7–82 (In Russian) |
Comments
The above inversion formula can be interpreted in terms of semi-groups. Another way to invert the Gauss transform is to write in the first equation $ t + u = v $, from which substitution a double-sided Laplace transform results. Then the inversion formula follows from well-known Laplace-transform techniques.
References
[a1] | I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) |
Gauss transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss_transform&oldid=13024