Namespaces
Variants
Actions

Difference between revisions of "Fredholm alternative"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
f0414101.png
 +
$#A+1 = 48 n = 0
 +
$#C+1 = 48 : ~/encyclopedia/old_files/data/F041/F.0401410 Fredholm alternative
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A statement of an alternative that follows from the [[Fredholm theorems|Fredholm theorems]]. In the case of a linear Fredholm integral equation of the second kind,
 
A statement of an alternative that follows from the [[Fredholm theorems|Fredholm theorems]]. In the case of a linear Fredholm integral equation of the second kind,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414101.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi ( x) - \lambda
 +
\int\limits _ { a } ^ { b }  K ( x, s) \phi ( s)  ds  = f ( x),\ \
 +
x \in [ a, b],
 +
$$
  
 
the Fredholm alternative states that either equation (1) and its conjugate equation
 
the Fredholm alternative states that either equation (1) and its conjugate equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414102.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\psi ( x) - \overline \lambda \;
 +
\int\limits _ { a } ^ { b }  \overline{ {K ( s, x) }}\; \psi ( s)  ds  = g ( x),\ \
 +
x \in [ a, b],
 +
$$
  
have unique solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414103.png" />, for any given functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414105.png" />, or the corresponding homogeneous equations
+
have unique solutions $  \phi , \psi $,  
 +
for any given functions f $
 +
and $  g $,  
 +
or the corresponding homogeneous equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414106.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1prm)</td></tr></table>
+
$$ \tag{1'}
 +
\phi ( x) - \lambda
 +
\int\limits _ { a } ^ { b }  K ( x, s) \phi ( s)  ds  = 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414107.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2prm)</td></tr></table>
+
$$ \tag{2'}
 +
\psi ( x) - \overline \lambda \; \int\limits _ { a } ^ { b }  \overline{ {K ( s, x) }}\; \psi ( s) ds  =  0
 +
$$
  
 
have non-zero solutions, where the number of linearly independent solutions is finite and is the same for both equations.
 
have non-zero solutions, where the number of linearly independent solutions is finite and is the same for both equations.
Line 17: Line 45:
 
In the second case equation (1) has a solution if and only if
 
In the second case equation (1) has a solution if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414108.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }  f ( x) \overline{ {\psi _ {k} ( x) }}\; dx  = 0,\ \
 +
k = 1 \dots n,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f0414109.png" /> is a complete system of linearly independent solutions of (2prm). Here the general solution of (1) has the form
+
where $  \psi _ {1} \dots \psi _ {n} $
 +
is a complete system of linearly independent solutions of (2'}). Here the general solution of (1) has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141010.png" /></td> </tr></table>
+
$$
 +
\phi ( x)  = \
 +
\phi _ {*} ( x) +
 +
\sum _ {k = 1 } ^ { n }  c _ {k} \phi _ {k} ( x),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141011.png" /> is some solution of (1), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141012.png" /> is a complete system of linearly independent solutions of (1prm), and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141013.png" /> are arbitrary constants. Similar statements also hold for equation (2).
+
where $  \phi _ {*} $
 +
is some solution of (1), $  \phi _ {1} \dots \phi _ {n} $
 +
is a complete system of linearly independent solutions of (1'}), and the $  c _ {k} $
 +
are arbitrary constants. Similar statements also hold for equation (2).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141014.png" /> be a continuous linear operator mapping a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141015.png" /> into itself; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141017.png" /> be the corresponding dual space and dual operator. Consider the equations:
+
Let $  T $
 +
be a continuous linear operator mapping a Banach space $  E $
 +
into itself; let $  E  ^ {*} $
 +
and $  T  ^ {*} $
 +
be the corresponding dual space and dual operator. Consider the equations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
T ( x) =  y,\ \
 +
x, y \in E,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
T  ^ {*} ( g)  = f,\  g, f \in E  ^ {*} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3prm)</td></tr></table>
+
$$ \tag{3'}
 +
T ( x)  = 0,\  x \in E,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4prm)</td></tr></table>
+
$$ \tag{4'}
 +
T  ^ {*} ( g)  = 0,\  g \in E  ^ {*} .
 +
$$
  
The Fredholm alternative for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141022.png" /> means the following: 1) either the equations (3) and (4) have solutions, for arbitrary right-hand sides, and then their solutions are unique; or 2) the homogeneous equations (3prm) and (4prm) have the same finite number of linearly independent solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141024.png" />, respectively; in this case, for equation (3), or (4) respectively, to have a solution, it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141026.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141028.png" />, respectively; here the general solution of (3) is given by
+
The Fredholm alternative for $  T $
 +
means the following: 1) either the equations (3) and (4) have solutions, for arbitrary right-hand sides, and then their solutions are unique; or 2) the homogeneous equations (3'}) and (4'}) have the same finite number of linearly independent solutions $  x _ {1} \dots x _ {n} $
 +
and $  g _ {1} \dots g _ {n} $,  
 +
respectively; in this case, for equation (3), or (4) respectively, to have a solution, it is necessary and sufficient that $  g _ {k} ( y) = 0 $,  
 +
$  k = 1 \dots n $,  
 +
or $  f ( x _ {k} ) = 0 $,  
 +
$  k = 1 \dots n $,  
 +
respectively; here the general solution of (3) is given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141029.png" /></td> </tr></table>
+
$$
 +
= x  ^ {*} +
 +
\sum _ {k = 1 } ^ { n }  c _ {k} x _ {k} ,
 +
$$
  
 
and the general solution of (4) by
 
and the general solution of (4) by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141030.png" /></td> </tr></table>
+
$$
 +
= g  ^ {*} +
 +
\sum _ {k = 1 } ^ { n }  c _ {k} g _ {k} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141031.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141032.png" />) is some solution of (3) ((4)), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141033.png" /> are arbitrary constants.
+
where $  x  ^ {*} $(
 +
respectively, $  g  ^ {*} $)  
 +
is some solution of (3) ((4)), and $  c _ {1} \dots c _ {n} $
 +
are arbitrary constants.
  
Each of the following two conditions is necessary and sufficient for the Fredholm alternative to hold for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141034.png" />.
+
Each of the following two conditions is necessary and sufficient for the Fredholm alternative to hold for the operator $  T $.
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141035.png" /> can be represented in the form
+
1) $  T $
 +
can be represented in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141036.png" /></td> </tr></table>
+
$$
 +
= W + V,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141037.png" /> is an operator with a two-sided continuous inverse and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141038.png" /> is a compact operator.
+
where $  W $
 +
is an operator with a two-sided continuous inverse and $  V $
 +
is a compact operator.
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141039.png" /> can be represented in the form
+
2) $  T $
 +
can be represented in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141040.png" /></td> </tr></table>
+
$$
 +
= W _ {1} + V _ {1} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141041.png" /> is an operator with a two-sided continuous inverse and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141042.png" /> is a finite-dimensional operator.
+
where $  W _ {1} $
 +
is an operator with a two-sided continuous inverse and $  V _ {1} $
 +
is a finite-dimensional operator.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  pp. Chapt. 1  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Equations of mathematical physics" , MIR  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  pp. Chapt. 1  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.S. Vladimirov,  "Equations of mathematical physics" , MIR  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. Kantorovich,  G.P. Akilov,  "Functional analysis in normed spaces" , Pergamon  (1964)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The precise form of the Fredholm alternative is as follows: Consider the equations (1) and (1prm) with a continuous kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141043.png" />. Then either equation (1) has a continuous solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141044.png" /> for any right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141045.png" /> or the homogeneous equation (1prm) has a non-trivial solution. In abstract form the alternative may be stated as follows. For a [[Fredholm-operator(2)|Fredholm operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141046.png" /> of index zero (cf. [[Index of an operator|Index of an operator]]) acting on a [[Banach space|Banach space]] the following holds true: Either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141047.png" /> is invertible or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041410/f04141048.png" /> has a non-trivial kernel (cf. [[Kernel of a linear operator|Kernel of a linear operator]]; [[Kernel of an integral operator|Kernel of an integral operator]]).
+
The precise form of the Fredholm alternative is as follows: Consider the equations (1) and (1'}) with a continuous kernel $  K $.  
 +
Then either equation (1) has a continuous solution $  \phi $
 +
for any right-hand side f $
 +
or the homogeneous equation (1'}) has a non-trivial solution. In abstract form the alternative may be stated as follows. For a [[Fredholm-operator(2)|Fredholm operator]] $  T $
 +
of index zero (cf. [[Index of an operator|Index of an operator]]) acting on a [[Banach space|Banach space]] the following holds true: Either $  T $
 +
is invertible or $  T $
 +
has a non-trivial kernel (cf. [[Kernel of a linear operator|Kernel of a linear operator]]; [[Kernel of an integral operator|Kernel of an integral operator]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.E. Taylor,  D.C. Lay,  "Introduction to functional analysis" , Wiley  (1980)  pp. Chapt. 5</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.E. Taylor,  D.C. Lay,  "Introduction to functional analysis" , Wiley  (1980)  pp. Chapt. 5</TD></TR></table>

Latest revision as of 19:40, 5 June 2020


A statement of an alternative that follows from the Fredholm theorems. In the case of a linear Fredholm integral equation of the second kind,

$$ \tag{1 } \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x, s) \phi ( s) ds = f ( x),\ \ x \in [ a, b], $$

the Fredholm alternative states that either equation (1) and its conjugate equation

$$ \tag{2 } \psi ( x) - \overline \lambda \; \int\limits _ { a } ^ { b } \overline{ {K ( s, x) }}\; \psi ( s) ds = g ( x),\ \ x \in [ a, b], $$

have unique solutions $ \phi , \psi $, for any given functions $ f $ and $ g $, or the corresponding homogeneous equations

$$ \tag{1'} \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x, s) \phi ( s) ds = 0, $$

$$ \tag{2'} \psi ( x) - \overline \lambda \; \int\limits _ { a } ^ { b } \overline{ {K ( s, x) }}\; \psi ( s) ds = 0 $$

have non-zero solutions, where the number of linearly independent solutions is finite and is the same for both equations.

In the second case equation (1) has a solution if and only if

$$ \int\limits _ { a } ^ { b } f ( x) \overline{ {\psi _ {k} ( x) }}\; dx = 0,\ \ k = 1 \dots n, $$

where $ \psi _ {1} \dots \psi _ {n} $ is a complete system of linearly independent solutions of (2'}). Here the general solution of (1) has the form

$$ \phi ( x) = \ \phi _ {*} ( x) + \sum _ {k = 1 } ^ { n } c _ {k} \phi _ {k} ( x), $$

where $ \phi _ {*} $ is some solution of (1), $ \phi _ {1} \dots \phi _ {n} $ is a complete system of linearly independent solutions of (1'}), and the $ c _ {k} $ are arbitrary constants. Similar statements also hold for equation (2).

Let $ T $ be a continuous linear operator mapping a Banach space $ E $ into itself; let $ E ^ {*} $ and $ T ^ {*} $ be the corresponding dual space and dual operator. Consider the equations:

$$ \tag{3 } T ( x) = y,\ \ x, y \in E, $$

$$ \tag{4 } T ^ {*} ( g) = f,\ g, f \in E ^ {*} , $$

$$ \tag{3'} T ( x) = 0,\ x \in E, $$

$$ \tag{4'} T ^ {*} ( g) = 0,\ g \in E ^ {*} . $$

The Fredholm alternative for $ T $ means the following: 1) either the equations (3) and (4) have solutions, for arbitrary right-hand sides, and then their solutions are unique; or 2) the homogeneous equations (3'}) and (4'}) have the same finite number of linearly independent solutions $ x _ {1} \dots x _ {n} $ and $ g _ {1} \dots g _ {n} $, respectively; in this case, for equation (3), or (4) respectively, to have a solution, it is necessary and sufficient that $ g _ {k} ( y) = 0 $, $ k = 1 \dots n $, or $ f ( x _ {k} ) = 0 $, $ k = 1 \dots n $, respectively; here the general solution of (3) is given by

$$ x = x ^ {*} + \sum _ {k = 1 } ^ { n } c _ {k} x _ {k} , $$

and the general solution of (4) by

$$ g = g ^ {*} + \sum _ {k = 1 } ^ { n } c _ {k} g _ {k} , $$

where $ x ^ {*} $( respectively, $ g ^ {*} $) is some solution of (3) ((4)), and $ c _ {1} \dots c _ {n} $ are arbitrary constants.

Each of the following two conditions is necessary and sufficient for the Fredholm alternative to hold for the operator $ T $.

1) $ T $ can be represented in the form

$$ T = W + V, $$

where $ W $ is an operator with a two-sided continuous inverse and $ V $ is a compact operator.

2) $ T $ can be represented in the form

$$ T = W _ {1} + V _ {1} , $$

where $ W _ {1} $ is an operator with a two-sided continuous inverse and $ V _ {1} $ is a finite-dimensional operator.

References

[1] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) pp. Chapt. 1 (Translated from Russian)
[2] V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian)
[3] L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)

Comments

The precise form of the Fredholm alternative is as follows: Consider the equations (1) and (1'}) with a continuous kernel $ K $. Then either equation (1) has a continuous solution $ \phi $ for any right-hand side $ f $ or the homogeneous equation (1'}) has a non-trivial solution. In abstract form the alternative may be stated as follows. For a Fredholm operator $ T $ of index zero (cf. Index of an operator) acting on a Banach space the following holds true: Either $ T $ is invertible or $ T $ has a non-trivial kernel (cf. Kernel of a linear operator; Kernel of an integral operator).

References

[a1] I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1977)
[a2] A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) pp. Chapt. 5
How to Cite This Entry:
Fredholm alternative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fredholm_alternative&oldid=15025
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article